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Abstract: This review examines the field of machine unlearning in neural networks, an
area driven by data privacy regulations such as the General Data Protection Regulation
and the California Consumer Privacy Act. By analyzing 37 primary studies of machine
unlearning applied to neural networks in both regression and classification tasks, this
review thoroughly evaluates the foundational principles, key performance metrics, and
methodologies used to assess these techniques. Special attention is given to recent ad-
vancements up to December 2023, including emerging approaches and frameworks. By
categorizing and detailing these unlearning techniques, this work offers deeper insights
into their evolution, effectiveness, efficiency, and broader applicability, thus providing a
solid foundation for future research, development, and practical implementations in the
realm of data privacy, model management, and compliance with evolving legal standards.
Additionally, this review addresses the challenges of selectively removing data contribu-
tions at both the client and instance levels, highlighting the balance between computational
costs and privacy guarantees.

Keywords: machine unlearning; data privacy; neural networks; selective forgetting

1. Introduction
In response to data privacy regulations like the General Data Protection Regulation

(GDPR) and California Consumer Privacy Act (CCPA), the concept of the ‘Right to be
Forgotten’ has gained visibility. These regulations impose compliance burdens on organiza-
tions by requiring them to implement mechanisms for data erasure. Specifically, the GDPR
stipulates that individuals have the right to demand the deletion of their data if it is no
longer necessary for its original purpose or if they withdraw consent for its processing [1].
Moreover, these deletions must be performed promptly, within a timeframe known as
“without undue delay” [2]. It is increasingly recognized that data deletion should not be
limited to databases but should extend to the removal of personal data from machine learn-
ing models themselves. For instance, a data regulator in the United Kingdom has warned
businesses about machine learning software falling under GDPR provisions. Similarly,
the US Federal Trade Commission had required Paravision, a facial recognition startup,
to erase a collection of facial images. These images were improperly acquired. They also
had to erase the machine learning models trained using these images [3]. Machine unlearn-
ing emerges as an area of research in response to these regulatory mandates. It refers to
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modifying trained machine learning models to selectively forget specific subsets of data,
thereby ensuring compliance with deletion requests without the need for complete model
retraining [4]. Retraining becomes expensive. Studies found that retraining large machine
learning models like GPT-3 can cost hundreds of thousands of dollars in computational
resources alone [5]. Consequently, the ability to unlearn becomes essential not only for
protecting individuals’ privacy but also for mitigating legal and financial risks associated
with non-compliance.

1.1. Nomenclature

Table 1 provides a detailed breakdown of the nomenclature used throughout this docu-
ment for clarity and reference. The nomenclature serves as a guide to understanding the var-
ious elements and entities involved in machine learning and machine unlearning processes.

Table 1. Common nomenclature used throughout the review related to machine unlearning.

Symbol Description

x Input data sample

y Predicted output

xu Data point to be unlearned

D Entire dataset

Du Subset of dataset to be unlearned

Dr Remaining dataset after unlearning

L Loss function

α Learning rate

θ Parameters

∇L Gradient of the loss function

H Hypothesis space

F Feature space

G Task space

W Weights

b Bias vector

ℓ Layer

z Logits or preactivation values

A Training algorithm

M Machine learning model trained on D

N Number of samples in the dataset

N Noise matrix

U Unlearning process

Pθ Distribution of model parameters

K Similarity measure

M′ Unlearned model

1.2. Overview and Contributions

While existing reviews on machine unlearning provide summaries of methodolo-
gies and taxonomies of techniques, there remain significant gaps in understanding their
limitations and areas needing further investigation. Specifically, current techniques face
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unresolved challenges regarding scalability, the precision of unlearning at different levels
(class-level versus individual data points), and reproducibility across various architectures
and datasets. Moreover, the effectiveness of these techniques in neural networks, particu-
larly in the contexts of regression and classification tasks, has not been thoroughly assessed.

This survey addresses these gaps by focusing exclusively on machine unlearning tech-
niques applied to neural networks and categorizing them based on foundational principles
and mathematical frameworks. It provides a chronological ordering of techniques up to
December 2023, analyzing their evolution, interrelationships, and contributions towards
overcoming existing limitations. Additionally, this work evaluates the reproducibility
of these techniques across different experimental setups, compares datasets and model
architectures, and analyzes the achieved levels of unlearning. The aim is to provide a
clearer understanding of the strengths and weaknesses of existing approaches, as well as to
identify areas requiring further exploration.

By presenting this systematic review, the survey not only categorizes existing tech-
niques but also serves to highlight current challenges and provide insights for advancing
the field of machine unlearning in neural networks.

1.3. General Objective

Conduct a systematic literature review on machine unlearning in neural networks for
classification and regression tasks.

1.4. Specific Objectives

1. Define the categorization framework for machine unlearning techniques applicable to
neural networks in regression and classification contexts.

2. Identify the foundational principles underlying different machine unlearning tech-
niques.

3. Analyze the metrics and methodologies commonly used to assess the efficacy of
machine unlearning techniques.

The structure of this document is designed to address the aspects of machine un-
learning. Section 1 provides an overview of the research topic, its significance, and the
contribution of the study. Section 2 outlines the research questions and the process of
selecting primary studies. It includes a description of the research methodology used to
gather and analyze data. Section 3 provides the nomenclature used and the definitions of
key terms and concepts related to machine unlearning, discusses the practical applications
of machine unlearning, and explores the challenges and obstacles encountered in its imple-
mentation. Section 4 examines the challenges and obstacles faced in the implementation of
machine unlearning techniques. Section 5 presents the practical applications of machine
unlearning techniques in various domains, highlighting their significance and relevance.
Section 6 is divided into subsections that categorize and examine different unlearning
techniques based on databases, architecture, and federated learning. This section provides
a detailed analysis of the methodologies used in each category. Section 7 interprets the
findings of the study. Finally, Section 8 summarizes the key findings, draws conclusions,
and suggests directions for future research.

2. Methodology
This review was performed in accordance with the PRISMA (Preferred Reporting

Items for Systematic Reviews and Meta-Analyses) guidelines. It also follows Kitchenham’s
methodology [6]. First, specific research questions were defined to guide the scope and
focus of the review. Second, a comprehensive search of primary studies was conducted
from relevant academic databases and sources to gather pertinent literature. Third, the



Computers 2025, 1, 0 4 of 55

primary studies were analyzed by examining the collected literature for quality, relevance,
and contributions to the field. Fourth, essential information and findings were extracted
from the studies.

2.1. Research Questions

This review aims to categorize and evaluate various machine unlearning techniques
within neural network models; consequently, it is guided by three research questions:

1. RQ1: How can machine unlearning techniques, for neural networks with regression
or classification tasks, be categorized?

2. RQ2: What are the foundational principles underlying different machine unlearning
techniques?

3. RQ3: What metrics and methods are commonly used to evaluate the effectiveness of
machine unlearning techniques in different datasets and architectural setups?

2.2. Search for Primary Studies

The process begins by selecting relevant academic databases and repositories. Five
key sources were chosen for their comprehensive coverage of machine learning literature:
ACM, IEEE, Science Direct, Springer, and ArXiv. The first four databases were selected due
to their extensive collection of peer-reviewed primary studies, which ensures the inclusion
of high-quality, validated research. ArXiv was included despite the lack of peer reviews
because it provides timely access to the latest insights and developments, which is essential
in the rapidly evolving field of machine learning. Prioritizing ArXiv allows the survey
to capture emerging techniques and trends that may not yet be covered in peer-reviewed
venues, ensuring a more up-to-date perspective on the topic.

The next step involves identifying keywords related to the research questions to create
search queries. The chosen keywords include machine unlearning, forgetting, mechanism,
data, removal, neural network, classification, regression, and federated unlearning. Using
these keywords, Search Strings (SS) were developed with Boolean operators “AND” and
“NOT” to refine the queries. The terms “generative” and “catastrophic” were explicitly
excluded from the search. The exclusion of “generative” aligns with the focus on specific
neural network architectures, as outlined in the Introduction, which does not encompass
generative models. “Catastrophic forgetting” was excluded because it refers to the unin-
tended loss of previously learned information when a neural network is trained on new
data, whereas this survey concentrates on techniques that allow for the controlled and
selective modification or removal of previously learned information.

These criteria and search strategies were established to ensure the inclusion of studies
most relevant to the research objectives. By using a combination of peer-reviewed and
preprint sources, the survey aims to balance the rigor of established research with the
innovative findings presented in preprints. The detailed list of Search Strings and its
corresponding ID SSi can be found in Table 2.

As mentioned before, this review on machine unlearning in neural networks will
focus on studies published from January 2015 to December 2023. This timeframe was
chosen because the first relevant paper in the field appeared in 2015. Additionally, pa-
pers published after this period have frequently cited this earlier work. Extending the
review to December 2023 aims to capture the most recent advancements and discussions
in this rapidly evolving area, ensuring a comprehensive and up-to-date analysis. Figure 1
illustrates the distribution of these studies per year, offering a visual representation of the
research trend in this domain.
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Table 2. Search Strings (SSi) used to find primary studies.

ID Search String

SS1 “machine unlearning” AND “neural network” AND (“CLASSIFICATION” OR
“REGRESSION”) NOT “generative” NOT “catastrophic”

SS2 “machine forgetting” AND “neural network” AND (“CLASSIFICATION” OR
“REGRESSION”) NOT “generative” NOT “catastrophic”

SS3 “forgetting mechanism” AND “neural network” AND (“CLASSIFICATION” OR
“REGRESSION”) NOT “generative” NOT “catastrophic”

SS4 “algorithmic forgetting” AND “neural network” AND (“CLASSIFICATION” OR
“REGRESSION”) NOT “generative” NOT “catastrophic”

SS5 “Data Removal” AND “neural network” AND (“CLASSIFICATION” OR
“REGRESSION”) NOT “generative” NOT “catastrophic”

Figure 1. Annual distribution of studies on machine unlearning in neural networks.

There were 445 primary studies found in the four repositories. Then, 118 duplicate
studies were removed and 11 primary studies were added using the snowballing techniques.
As a result, a total of 348 primary studies were identified. The number of included and
excluded papers for each phase is presented in Figure 2 using the PRISMA flowchart.
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Figure 2. Systematic review flowchart.

2.3. Analysis of Primary Results

The 348 primary studies were filtered by evaluating the titles, abstracts, and conclu-
sions according to the inclusion and exclusion criteria and the assessment questions. One
inclusion criterion stated that the studies must be accessible in full text for a comprehensive
review, and research from preprint servers was included to capture the latest developments
in the field. Studies that present frameworks or methodologies designed for unlearning
in machine learning were also included. Specific exclusion criteria were applied, such as
omitting conference abstracts, editorials, and opinion pieces without empirical research
data or detailed methodologies. Additionally, studies that were not published in English
and studies focused on methods related to catastrophic forgetting or unintentional data
forgetting were excluded. Studies were also excluded if the models were not neural net-
works or if they were not used for regression and classification tasks. Excluding generative
models and the concept of catastrophic forgetting aimed to maintain focus on deliberate
unlearning mechanisms. This selection process ultimately narrowed down the focus to
37 primary studies, as shown in Table 3, providing a foundation for the review. It gives a
clear view of the title of the paper, its identifier, and the name of the proposed technique
or a short name of the title if no name for the technique was given in the paper. This will
facilitate the organization and retrieval of relevant information.
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Table 3. Primary Studies.

ID Title Authors Year Technique

1 Trojaning Attack on Neural Networks [7] Liu et al. 2018 BadNets 2

2 Class Clown: Data Redaction in Machine
Unlearning at Enterprise Scale [8] Felps et al. 2020 Class Clown 2

3 Fast Yet Effective Machine
Unlearning [9] Tarun et al. 2024 Fast yet effective machine unlearning 2

4 Learning with Selective Forgetting [10] Shibata et al. 2021 Mnemonic code 2

5 Machine Unlearning [11] Bourtoule et al. 2020 SISA 1

6 Adaptive Machine Unlearning [12] Gupta et al. 2021 Adaptive Machine Unlearning 2

7
No Matter How You Slice It: Machine
Unlearning with SISA Comes at the
Expense of Minority Classes [13]

Koch et al. 2023 No matter how you slice it 2

8 Coded Machine Unlearning [14] Aldaghri et al. 2021 Coded machine unlearning 1

9
DeepObliviate: A Powerful Charm for
Erasing Data Residual Memory in Deep
Neural Network [15]

He et al. 2021 DeepObliviate 2

10 ARCANE: An Efficient Architecture for
Exact Machine Unlearning [16] Yan et al. 2022 ARCANE 2

11 Amnesiac Machine Learning [17] Graves et al. 2020 Amnesiac Machine Unlearning 2

12 Unrolling SGD: Understanding Factors
Influencing Machine Unlearning [18] Thudi et al. 2022 Unrolling SGD 1

13 Learn to Forget: Machine Unlearning via
Neuron Masking [19] Liu et al. 2021 Forsaken 2

14 Backdoor Defense with Machine
Unlearning [20] Liu et al. 2022 BAERASER 2

15 Can Bad Teaching Induce
Forgetting? [21] Chundawat et al. 2023 Bad teaching 2

16 Zero-Shot Machine Unlearning [22] Chundawat et al. 2023 Gated Knowledge Transfer 2

17 Efficient Two-stage Model Retraining for
Machine Unlearning [23] Kim et al. 2022 Efficient two-stage model 2

18 Towards Unbounded Machine
Unlearning [24] Kurmanji et al. 2023 Towards Unbounded Machine

Unlearning 2

19 Lightweight machine unlearning in
neural network [25] Chen et al. 2021 Lightweight machine unlearning 2

20 Deep Regression Unlearning [26] Tarun et al. 2023 Deep Regression Unlearning 2

21
Eternal Sunshine of the Spotless Net:
Selective Forgetting in Deep
Networks [27]

Golatkar et al. 2020 Eternal Sunshine 2

22

Forgetting Outside the Box: Scrubbing
Deep Networks of Information
Accessible from Input-Output
Observation [28]

Golatkar et al. 2020 Forgetting outside the box 2

23 Mixed-Privacy Forgetting in Deep
Networks [29] Golatkar et al. 2021 Mixed privacy 2
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Table 3. Cont.

ID Title Authors Year Technique

24 Certified Data Removal from Machine
Learning Models [30] Guo et al. 2023 Certified Removal 2

25 Approximate Data Deletion from
Machine Learning Models [31] Izzo et al. 2021 Projective Residual Update 2

26
PUMA:Performance Unchanged Model
Augmentation for Training Data
Removal [32]

Wu et al. 2022 Performance Unchanged Model
Augmentation 2

27 Machine Unlearning of Features and
Labels [33] Warnecke et al. 2023 Unlearn Features and labels 2

28
FedEraser: Enabling Efficient Client-Level
Data Removal from Federated Learning
Model [34]

Liu et al. 2021 FedEraser 2

29 Federated Unlearning with Knowledge
Distillation [35] Wu et al. 2022 FU with Knowledge distillation 2

30 Federated Unlearning via
Class-Discriminative Pruning [36] Wang et al. 2022 Class-Discriminative Pruning 2

31
The Right to be Forgotten in Federated
Learning: An Efficient Realization with
Rapid Retraining [37]

Liu et al. 2022 Efficient Realization with Rapid
Retraining 2

32
FedRecover: Recovering from Poisoning
Attacks in Federated Learning using
Historical Information [38]

Cao et al. 2022 FedRecover 2

33 Subspace based Federated
Unlearning [39] Li et al. 2023 Subspace-based Unlearning 2

34 Asynchronous Federated Unlearning [40] Su et al. 2023 Asynchronous Federated Unlearning 2

35
Heterogeneous Decentralized Machine
Unlearning with Seed Model
Distillation [41]

Ye et al. 2023 Seed Model Distillation 2

36 Federated Unlearning: How to Efficiently
Erase a Client in FL? [42] Halimi et al. 2023 Federated Client-Level Unlearning 2

37
QuickDrop: Efficient Federated
Unlearning by Integrated Dataset
Distillation [43]

Dhasade et al. 2023 Integrated Dataset Distillation 2

1 Type of unlearning: exact unlearning. 2 Type of unlearning: approximate unlearning.

3. Theoretical Framework
This section delves into key concepts essential for understanding machine unlearning

techniques, explores diverse scenarios where these techniques are applied, and examines
the obstacles encountered in their implementation.

3.1. Definitions

This subsection begins with a breakdown of symbols used throughout this document.
Additionally, definitions are provided for concepts such as machine unlearning, exact
machine unlearning, and approximate machine unlearning, with capture complex setting
the stage for understanding.
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3.1.1. Machine Unlearning

The term “machine unlearning” was introduced in “Towards Making Systems Forget
with Machine Unlearning” [44]. The authors of [44] proposed an unlearning algorithm
that reformulates the learning process into a summation format. By updating only a small
part of these summations, their method achieves significantly faster unlearning compared
to retraining the model from scratch. However, this approach is limited to traditional
machine learning techniques that can be represented in a summation form. Building on this
foundational idea, machine unlearning has come to refer more broadly to the process in
which the influence of a specific subset of a training dataset, denoted as Du, is removed from
a trained machine learning model. The goal is to modify the model M so that it performs as
if it had never encountered the data in Du. This is achieved through an unlearning process,
U(A(D), D, Du), which adjusts the model’s parameters or data to exclude the effects of the
unlearning dataset Du while retaining the influence of the remaining dataset Dr.

3.1.2. Exact Machine Unlearning

Exact unlearning ensures that the modified machine learning model behaves as though
it never encountered the unlearned data subset. This means that after the unlearning
process, the model’s predictions, outputs, and behaviors will be statistically identical to
those produced by a model that was retrained from scratch using the remaining dataset,
excluding the subset of unlearned data [27]. The goal is to ensure that no identifiable
impact or knowledge of the unlearned data influences the model’s performance or outputs,
maintaining the integrity and confidentiality of the training process. However, one of
the drawbacks of exact unlearning is its limited applicability. Complex models, due to
their intricate architectures and numerous parameters, may not allow for such an exact
replication of the model’s original state after unlearning. This limitation may necessitate
alternative approaches, such as approximate unlearning, which might allow for minor
deviations in behavior.

3.1.3. Approximate Machine Unlearning

This unlearning method ensures that the modified model and a model retrained from
scratch are approximately indistinguishable in their output. Typically, this approximation is
achieved using differential privacy techniques, such as ϵ-δ certified unlearning [30]. In this
context, the ϵ-δ certified unlearning approach bounds the divergence between the output
of the unlearned model and the retrained model to a defined threshold. Specifically, ϵ-δ
certified unlearning ensures that the divergence between the two models remains within a
tolerable margin.

However, challenges remain in implementing approximate unlearning effectively.
For instance, the degree of privacy and tolerance levels can affect the model’s accuracy
and performance, and ensuring that this balance does not compromise the quality of the
unlearned model is essential. Additionally, different model architectures and loss functions
may impact the efficacy and efficiency of the unlearning process, making it imperative to
tailor these techniques to specific scenarios [45].

Many methods aim for “exact” unlearning by achieving statistical indistinguishability
from a model trained without forgotten data [26]. However, achieving statistical indistin-
guishability does not necessarily mean that the models are mathematically equivalent or
that all traces of the data are completely removed [16]. Techniques that strive for exact
unlearning often rely on approximations and assumptions that limit their ability to achieve
true equivalence with a model trained from scratch [24]. The stochastic nature of training
algorithms introduces variability in model parameters [11], making it difficult to achieve a
truly exact method in practice. In federated learning, the lack of access to client datasets and
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the stochastic nature of training pose additional challenges, making it difficult to achieve
exact unlearning. Any approximation method is likely to fail to reach the same result as
training without the unlearned data [35].

3.1.4. Differential Privacy

Differential privacy (DP) (Figure 3) is a foundational framework in data privacy that
ensures individuals are not adversely affected by allowing their data to be used in studies or
analyses [46]. It provides a promise by data curators to data subjects that their participation
in data analysis will not result in any negative consequences, regardless of the availability of
other datasets or information sources. While DP can naturally achieve machine unlearning
by ensuring that the presence of a sample in the training data cannot be discerned from
the model, it primarily focuses on protecting the privacy of all samples to some extent. DP
imposes a subtle bound on the contribution of each sample to the final model, but it cannot
completely constrain the contribution to zero without rendering the model ineffective for
learning from the training data. On the other hand, machine unlearning aims to completely
cancel the contribution of a target sample, effectively removing its influence from the model.
Consequently, machine unlearning (MU) and DP operate on different principles, with MU
seeking to eliminate specific data contributions entirely.

Figure 3. Scheme of differential privacy applied to machine learning models.

3.1.5. Federated Learning

Federated learning (Figure 4) operates as a decentralized method in machine learning,
where numerous clients participate in training a global model without sharing their raw
data [47]. Each client contributes to the training process with its local dataset. The global
model’s parameters are updated collaboratively across all clients through iterative rounds
of communication and computation, where each client computes model updates based on
its local data and transmits them to a central server. The central server aggregates these
updates to refine parameters, aiming to improve the global model’s performance while
preserving the privacy of individual datasets.
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Figure 4. Representation of federated learning and federated unlearning. Source adapted from [48].

3.2. Metrics

In this part, various metrics used to evaluate machine unlearning techniques will
be defined. The lack of a uniform metric for unlearning stems from the diverse goals,
definitions, and evaluation methods employed by different approaches. Each unlearning
technique aims to address a specific facet of the problem, which leads to the use of varied
metrics. This makes direct comparisons challenging and highlights the need for a more
unified framework to evaluate unlearning methods. There are two methods to assess a
machine unlearning technique: evaluation metrics and verification methods. Evaluation
metrics serve as theoretical criteria for assessing unlearning efficacy; for example, accuracy
on forget set or retain set, error rate, relearn time, Anammesis Index, and distance metric are
used for this purpose. Verification methods aim to ensure that one cannot easily distinguish
between unlearned models and their retrained counterparts. Some examples of verification
methods are attacks and unlearning cost. In Section 6, “Analysis of Techniques”, the
performance of each technique on these metrics will be presented, along with comparisons
to other baselines and techniques.

3.2.1. Accuracy on Forget Set

Accuracy measures the proportion of correctly classified instances out of the total
instances in a dataset [49]. It is calculated as the number of correct predictions divided by
the total number of predictions, often expressed as a percentage. In machine unlearning
techniques, the accuracy is measured on the forget set Du and refers to the model’s perfor-
mance on the subset of data designated for unlearning. The goal of accuracy on Du is to be
close to that of the retrained model. Ideally, this accuracy should be low [22].
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3.2.2. Accuracy on Retain Set

Accuracy on the retain set Dr refers to the model’s performance on the data subset
that remains unchanged after unlearning. The goal of accuracy on Dr is to closely match
the performance of the original model before unlearning. This metric assesses how well the
model retains its classification capability on the data it was initially trained on [22].

3.2.3. Error Rate

Error Rate is calculated as 1−Accuracy on retain set. It measures the proportion of
misclassified instances in the data subset that remains unchanged after unlearning [13].

3.2.4. Relearn Time

Relearn time measures the model’s retention of information about the unlearned data.
It acts as a way to measure how quickly the model can recover its performance on the
unlearned data by retraining. If the model achieves comparable performance to the source
model with minimal retraining epochs, it suggests that residual information about the
unlearned data persists within the model [9].

3.2.5. Anamnesis Index

The Anamnesis Index evaluates how quickly the unlearned model can regain a certain
level of accuracy by comparing its relearn time with that of a model trained from scratch on
the retained data. It normalizes the relearn time by considering a margin of α% around the
model’s original accuracy before unlearning. This metric not only measures how quickly
the model can relearn but also assesses the effectiveness of the unlearning process [22].

3.2.6. Distance

Another way to evaluate the effectiveness of an approximate data deletion method is
by measuring the ℓ2 distance between the estimated model parameters and those obtained
through complete retraining. When the parameters from the unlearning model closely
align with the model fully retrained, it indicates that both models are likely to make similar
predictions [31].

3.2.7. Attacks

The metric evaluates the success of unlearning models based on their ability to mitigate
membership inference attacks and backdoor infection scenarios. These studies involve
simulations where adversaries attempt to infiltrate and compromise the model’s privacy
and integrity. In the next section, further details on these evaluations will be discussed
in depth.

3.2.8. Unlearning Cost (Storage and Time Cost)

This refers to the resources, both in terms of storage capacity and computational time,
required to implement the unlearning process effectively. The unlearning cost includes
the storage space needed to maintain original model parameters, intermediate states
during unlearning, and redundant data. It also encompasses the time taken to execute the
unlearning procedure, which involves iterative processes to remove or adjust trained data.

4. Challenges
Machine unlearning faces challenges from both the inherent properties of machine

learning models and practical implementation issues.
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4.1. Stochastic

The stochastic nature of training in modern machine learning pipelines introduces
complexities that hinder effective unlearning strategies [4]. This stochasticity arises from
various factors, including the random sampling of small batches from the dataset dur-
ing training, the unpredictable ordering of batches across epochs, and the parallelization
of training without explicit synchronization, leading to non-deterministic behavior. Fur-
thermore, training is an incremental process where updates depend on prior updates,
amplifying the impact of stochasticity throughout the learning procedure. This incremental
nature, coupled with the inherent randomness in learning algorithms such as stochastic
gradient descent, poses significant challenges in understanding how individual data points
influence the learned model.

4.2. Streisand Effect

The misuse of scrubbing procedures can inadvertently amplify the visibility of forgot-
ten information—a phenomenon known as the “Streisand effect” [50]. Originating from
Barbara Streisand’s attempt to restrict online access to her residence, the term refers to
the unintended consequence of heightened attention resulting from efforts to suppress
information.

4.3. Data Interconnections

Machine learning models do not simply analyze individual data points in isolation.
Instead, they collaboratively extract intricate statistical patterns and interdependencies
among data points [51]. These interconnections can be deeply embedded within the
model’s learned representations. Removing a single data point can disrupt these learned
patterns and interconnections, potentially causing a notable performance decline. This
complexity underscores a significant challenge in machine unlearning: effectively removing
the influence of specific data points while preserving the model’s overall performance and
coherence. The challenge lies in disentangling the contributions of individual data points
from the interconnected structure of the model without negatively impacting its ability to
generalize from the remaining data.

4.4. Uncertainty

Machine unlearning has become a crucial area of research due to increasing privacy
regulations and security concerns. However, selectively removing knowledge from neural
networks introduces various types of uncertainty that can impact model stability, general-
ization, and reliability [52]. The main sources of uncertainty in machine unlearning and the
recent approaches to mitigate their effects are as follows:

• Epistemic uncertainty arises from the model’s limited knowledge about the underlying
data distribution. When specific training data points are removed, the model’s uncer-
tainty can increase, leading to instability in its predictions [53,54]. Researchers have
introduced methods that measures deviations in model parameters after unlearning
compared to a fully retrained model [54].

• Aleatoric uncertainty is related to inherent randomness in the data. The process
of unlearning can modify the variance of model parameters, affecting prediction
consistency. Recent studies highlight that some unlearning methods based on gradient
ascent can amplify aleatoric uncertainty unless suitable regularization techniques are
applied [55].
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5. Application
In addition to ensuring compliance with data protection regulations, as discussed in

the introduction, machine unlearning offers a wide range of applications and benefits. This
section will explore these broader applications, demonstrating how machine unlearning
techniques can address various challenges and improve modern machine learning practices.

5.1. Prevent Backdoor Injection Attack

A backdoor injection attack is a malicious manipulation of a machine learning model’s
behavior, where an adversary strategically implants a trigger pattern into the training data
to induce the model to exhibit specific, undesired behaviors upon encountering inputs con-
taining the trigger pattern [20]. The attacker aims to modify the model’s decision boundary
such that inputs augmented with the trigger pattern are classified into a targeted label,
regardless of their original labels. This attack manipulates the model’s predictions, leading
to a compromised system vulnerable to adversarial manipulation. Machine unlearning aids
in backdoor defense by strategically eliminating the influence of specific trigger patterns
introduced by attackers on the victim model. It achieves this by reversing the backdoor
injection process and erasing the memorized trigger patterns from the model’s learned
representations.

5.2. Prevent Membership Inference Attacks

Membership inference attacks aim to determine whether a specific data point was part
of the training data for a machine learning model [56]. This attack exploits the inadvertent
leakage of information contained within a model’s outputs, enabling adversaries to infer the
presence or absence of individual data points in the training dataset. Machine unlearning
techniques, designed to remove or mitigate the influence of certain data points on a
model’s parameters, can serve as a defense mechanism against membership inference
attacks. By systematically eliminating the association between sensitive data points and
the model’s parameters, unlearning disrupts the adversary’s ability to infer membership
status accurately.

5.3. Fast Model Debias

Bias in machine learning models arises from systematic errors or prejudices in predic-
tions, often stemming from skewed or incomplete training data. These biases can lead to
unfair outcomes, perpetuating social disparities and undermining prediction reliability. To
mitigate this issue, [57] advocates for the application of machine unlearning techniques
as a debiasing tool. Unlike previous methods that often require costly human labeling or
computationally intensive model retraining, machine unlearning offers a more scalable
solution. The process involves first identifying the most influential harmful samples, fol-
lowed by the application of machine unlearning to effectively remove associated biases.
This approach addresses the limitations of traditional debiasing mechanisms and enhances
fairness in models without compromising scalability or accuracy.

5.4. Enhancing Transfer Learning

Transfer learning, the process of adapting a pretrained model to a related task, often
encounters challenges when the source data contain irrelevant or harmful classes for the
target task. Machine unlearning techniques provide a solution by selectively removing such
classes, thereby improving transfer learning accuracy. The ℓ1-sparse MU method, proposed
by [58], demonstrates significant promise in this regard. By integrating sparsity-inducing
penalties into the unlearning process, this method efficiently removes undesirable data
classes while preserving crucial information for the target task. The study [58] proves that
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ℓ1-sparse MU achieves comparable or superior transfer learning accuracy to traditional
retraining-based approaches, with the added advantage of computational efficiency, making
it an appealing choice for large-scale transfer learning tasks.

5.5. Cost and Time Saving

Machine unlearning techniques offer a cost-effective alternative to traditional meth-
ods of handling personal data under regulatory frameworks like the GDPR. When data
subjects invoke the “right to erasure”, data controllers often face the challenging task of
managing and modifying AI models to comply with regulatory requirements. Traditional
solutions, such as retraining AI models using modified data sets, are time-consuming and
costly. This process often involves extensive research and development costs, delays, and
potential instability in AI performance, particularly when the system must relearn and
adapt to the altered data environment [59]. Additionally, maintaining compliance with
data privacy regulations can result in significant operational costs, especially in the EU
market, where strict enforcement of privacy rules adds financial burdens not encountered
in other global markets.

6. Analysis of Techniques
The taxonomy distinguishes between different approaches. An approach focuses

on modifying the training data and is classified under data reorganization. Another
approach involves direct adjustments to the model and is categorized as architecture-based
techniques. There is also a category for federated unlearning, which focuses on client-
specific data removal in decentralized models. Figure 5 summarizes the comprehensive
taxonomy of machine unlearning techniques.

Figure 5. Taxonomy of machine unlearning techniques in neural networks.

In the rest of the section, each technique will be presented in chronological order
within its corresponding category of either data-based, architecture-based, or federated
unlearning. And each technique will include a definition outlining its principles and the
evaluation criteria used to assess its effectiveness.
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6.1. Data Based

In this section, the primary studies propose techniques that seek to unlearn via data
modification. These unlearning techniques involve the alteration or crafting of specific
data points to induce misclassification in machine learning models, effectively achieving
unlearning.

6.1.1. BadNets
Definition

The paper [7] proposes a perspective on trojan attacks within the framework of ma-
chine unlearning, providing an approach to manipulate neural network behavior in some
data point while preserving its normal functionality in the clean data. It initiates with the
assumption of full access to the target neural network but lacks access to its original training
or testing data. The attacker orchestrates a trojan trigger, functioning as a catalyst to induce
specific misbehavior in the network. The trigger of the attack is crafted by pinpointing
internal neurons strongly linked to the trigger region. The selection process for these
neurons is grounded in specific equations to quantify neuron–trigger connectivity. First,
the relationship between the target layer and its preceding layer is established through:

ℓ = ℓpreceding ×W + b. (1)

To identify the most connected neurons, the following equation is used:

argmaxt

(
n

∑
j=0

ABS(Wℓ(j,t))

)
. (2)

Here, argmaxt finds the neuron with the maximum sum of absolute weight values,
ABS(Wlayer(j,t)), connecting it to the preceding layer. By analyzing these weights, the
neurons most strongly connected to the trigger region are identified.

This crafted trigger is then used to produce tailored training data points designed
to induce misclassification in the neural network; with this misbehavior in certain data
points, this technique pretends to achieve machine unlearning. The model is retrained
using only these meticulously crafted data points, ensuring it operates normally under
typical circumstances and misclassifies inputs targeted for unlearning.

Metric

The effectiveness of the proposed trojan attack technique is evaluated using three met-
rics. These include the success rate of the trojan trigger in inducing the desired misbehavior,
the decrease in model accuracy on normal inputs, and the time efficiency of the attack
process. The success rate is quantified by the accuracy of the trojaned model on datasets
with and without the trojan trigger. The results indicate that the trojaned behavior is
successfully triggered (meaning, for machine unlearning, the data point was forgotten and
misclassified) in more than 92% of cases, with minimal impact on the model’s performance
on normal inputs (an average accuracy decrease of less than 3.5%). It demonstrates that
even for complex models, trigger generation takes less than 13 min and retraining times
are consistently under 4 h.

6.1.2. Class Clown
Definition

The technique [8] selectively removes sensitive data points from machine learning
models without requiring full retraining. It employs intentional label poisoning during
incremental retraining epochs to modify the model’s behavior around identified sensitive
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data points. This approach aims to alter the model’s decision boundaries near the redacted
points, thereby reducing their susceptibility to membership inference attacks. The process
utilizes stochastic gradient descent with mini-batches to balance the influence of poisoned
gradients and maintain accuracy, using only true class data for retraining. Sequential
removal of multiple points is managed through a simulated queue of redaction requests.
In cases where removal impacts task accuracy, a brief additional training phase with new
or original data helps in recovery while ensuring continued compliance with data privacy
regulations.

Metric

The technique achieves significant time savings, being approximately 10 times faster
than the process of removing sensitive data points and retraining the model. This efficiency
advantage becomes more pronounced with larger datasets or longer training epochs, where
this technique remains unaffected in terms of time required. Moreover, the approach
maintains task accuracy while effectively reducing membership inference confidence to
ensure that removed points are consistently misclassified as “Out” or not seen in training.

6.1.3. Fast Yet Effective Machine Unlearning
Definition

The error-maximizing noise technique, as proposed in [9], involves the generation of
noise patterns tailored to induce misclassification in the forget set while preserving the
model’s performance on the retain set. This technique is formulated as an optimization
problem aiming to find the N that maximizes the L(M, y) for the forget classes while
minimizing the magnitude of the noise. The optimization process typically involves
techniques such as gradient descent or stochastic gradient descent to iteratively update
the wnoise of the N until convergence. Then, the noise matrix N is applied to the forget set
during the impair step of the unlearning process. Finally, the repair step in the unlearning
process involves fine-tuning the model on a retain set to recover its performance on the
remaining classes.

Metric

The proposed method demonstrates superior performance in unlearning specific
classes compared to baseline methods, such as FineTune and NegGrad. It effectively
reduces the accuracy on the forget set to near zero while maintaining high accuracy on the
retained set. The method also shows comparable weight distance to retraining, suggesting
effective modification of network weights without overfitting to noise.

6.1.4. Mnemonic Code
Definition

The Learning with Selective Forgetting technique [10] proposes to forget specified
classes while preserving others selectively. The core of this technique involves the use
of mnemonic codes, which are unique, synthetic signals assigned to each class. These
mnemonic codes are generated as random pixel value images for each class and are em-
bedded into training samples to create augmented samples. The embedding process for a
sample xk

i of class c in task k involves generating the augmented sample x̃k
i as follows:

x̃k
i = λxk

i + (1− λ)ξk,c (3)

where λ is a random variable in [0, 1] and ξk,c is the mnemonic code for class c.
The model is trained using a total loss function that consists of four terms: classification

loss, mnemonic loss, selective forgetting loss, and a regularization term. The classification
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loss would be softmax cross entropy or additive margin softmax. The mnemonic loss ties
each mnemonic code to the corresponding class using the augmented samples. The selective
forgetting loss ensures that only classes in the preservation set are remembered. The
regularization term LR prevents catastrophic forgetting using adapted versions of existing
regularization methods: Learning without Forgetting, Elastic Weight Consolidation, and
Memory-Aware Synapses. After training, only the mnemonic codes for the preservation set
classes are retained. The mnemonic codes for the classes in the deletion set are discarded to
ensure they are forgotten.

Metric

Across datasets, the technique achieves an average accuracy of approximately 0.90
for preservation sets, which is notably higher compared to [8,9], ranging from 0.80 to 0.85.
It demonstrates robustness across varying ratios of classes in deletion sets, showcasing
consistent performance across different task complexities and dataset compositions.

Architecture Based

Architecture-based unlearning techniques leverage modifications in the model archi-
tecture to facilitate the unlearning process. These techniques can be further categorized
into modular unlearning, gradient ascent, teacher–student models, and scrubbing weights,
each focusing on restructuring or modifying the model’s architecture to facilitate targeted
data removal while preserving overall model performance.

6.2. Architecture Based: Modular Unlearning

These methods focus on enhancing model adaptability by facilitating selective data
removal without the need for model retraining. Each technique introduces unique strategies
tailored to mitigate the impact of removing specific data points from trained models.
Through innovative partitioning and isolation strategies, these approaches aim to preserve
model accuracy while minimizing computational overhead associated with traditional
retraining methods. The subcategory modular unlearning will contain specific notation;
please refer to Table 4 for symbols and definitions.

Table 4. Specific notation for SISA approach.

Symbol Description

S Number of shards

R Number of slices per shard

K Number of unlearning requests

1/S Fraction of the data used for training

Di Shard i

Di,j Slice j of shard i

G Encoding matrix

Di Dataset block i

d Block index

6.2.1. SISA Original
Definition

SISA [11] accommodates unlearning requests by facilitating targeted model updates
based on the removal of specific data points. At its core, SISA leverages the division
of the dataset into shards, each representing a distinct subset of the data. Within each
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shard, the data are further partitioned into slices, allowing for incremental training over
successive portions of the dataset. The training process occurs independently for each
model, ensuring isolation between models and preventing the exchange of information or
updates. This isolation preserves the influence of each shard on its corresponding model,
enhancing model specificity and reducing interference from unrelated data points. During
inference, predictions from models are aggregated, typically employing strategies like
majority voting or averaging, to generate a final prediction. The rationale behind the
unlearning is that when you need to unlearn specific data points, you only need to retrain
the models corresponding to the shards that contain those data points, not the entire model.
This reduces the amount of data that need to be processed during retraining, thus saving
time.

Metric

SISA training achieves a desired speed-up for a fixed number of unlearning requests,
requiring retraining of only 0.003% of the total dataset size. The efficacy of SISA training
exhibits variability contingent upon dataset characteristics and task intricacy. Instances
characterized by imbalanced class distributions or substantial noise levels pose challenges
for SISA training, potentially leading to diminished model accuracy. Furthermore, this
approach requires significant storage capacity.

6.2.2. Adaptive Machine Unlearning
Definition

The SISA algorithm is known for its robustness against non-adaptive deletion se-
quences. This means SISA relies on the implicit assumption that the points that are deleted
are independent of the randomness used to train the models. Ref. [12] proposes an extension
of SISA to handle adaptive deletion requests. These are requests that change dynamically
based on user observations or changes in the underlying model. The authors of [12] suggest
that by obscuring the internal state of the algorithm using techniques from differential
privacy [46], such guarantees can be achieved. The paper leverages the principles of dif-
ferential privacy to design the enhanced version of the SISA algorithm. Specifically, it
ensures that the algorithm’s behavior remains indistinguishable under various scenarios
induced by adaptive deletion requests. Consequently, it furnishes data deletion guarantees
that withstand adversaries with knowledge of the internal state of the machine learning
algorithm.

Metric

The evaluation focuses on deletion guarantees. These guarantees measure how well
the model maintains accuracy, parameter stability, and information security after selective
data removal. These guarantees are represented by metrics such as α, which measures
accuracy loss post-deletion; β, indicating changes in model parameters; and γ, assessing
residual information leakage about deleted data. Additionally, the paper employs differen-
tial privacy metrics ϵ and δ to quantify the level of privacy protection against analyses of
model outputs and update sequences. Compared to Standard SISA, the proposed technique
improves privacy guarantees by 15% on α, 10% on β, and 12% on γ. Compared to the naive
approach, it shows improvements of 20% on α, 18% on β, and 15% on γ.

6.2.3. No Matter How You Slice It
Definition

The paper [13] highlights the tendency of SISA to exacerbate performance disparities
between majority and minority classes. They investigated the impact of various imbalance
ratios (1:10, 1:100, 1:1000) and different methods to mitigate class imbalance (random over-
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sampling, random under-sampling, cost-sensitive learning, focal loss, label distribution-
aware margin) on SISA, monolith baseline and Rus to 1/sqrt(S). The authors suggest that
the RUS baseline, which involves down-sampling the dataset to a shard size of 1/sqrt(S),
consistently outperforms SISA and the monolith baseline. Its advantage becomes more
pronounced as the imbalance ratio increases while maintaining the same average-case
retraining speed-up for unlearning requests. Furthermore, they conduct experiments with
different numbers of slices (3, 6, 12 slices) and shards (monolith, 5, 10, 20 shards) to further
explore this relationship. The results indicate that the number of shards influences model
performance, whereas varying the number of slices has a lesser impact. In this paper,
it is also mentioned that certain groups of the population (upper-class young people)
are more likely to be aware of privacy rights and, hence, more probable to request data
deletion. Consequently, the authors recognized the importance of distribution-aware
sharding, which involves sorting samples based on their likelihood of being forgotten, to
optimize the unlearning process.

Metric

The paper uses error rates as the primary metric to evaluate the technique, particularly
focusing on the disparity in performance between majority and minority classes. The
evaluation compares the SISA technique to a baseline involving random under-sampling
(RUS) to a shard size of 1

S . The paper reports that the RUS baseline consistently outperforms
SISA in terms of minority class error rates, with the performance gap increasing as the
imbalance ratio rises. For example, with an imbalance ratio of 1:1000, the RUS baseline
shows a lower error rate for minority classes compared to SISA, while preserving the same
average-case retraining speed-up for unlearning requests.
The findings suggest that minority class performance suffers when the unlearning like-
lihood is higher, as these samples are relegated to later slices and receive less attention
during training. Conversely, minority class performance improves when associated with a
lower-than-average unlearning likelihood. This is because samples with lower unlearning
likelihoods are prioritized during training, allowing the model to learn their features more
effectively.

6.2.4. Coded Machine Unlearning
Definition

The framework [14] proposes preprocessing the training dataset. This process involves
generating a G using the RandMatrix function. Each entry gij of G represents whether
the samples from the i-th shard contribute to the j-th coded shard. Then, each coded
shard is sent to a weak learner that trains on this subset of data; finally, the master node
aggregates the models. The unlearning algorithm operates on the encoded dataset but
uses information about the original unencoded samples to identify the relevant shards
and update the model accordingly. The encoding matrix G is used to map between the
original and encoded representations of the dataset. This method enables more efficient
unlearning while exhibiting a better trade-off in terms of performance in terms of MSE
versus unlearning cost. The protocol is designed to handle large-scale datasets efficiently,
making it scalable to real-world applications with extensive data volumes.

Metric

This technique compares to retraining from scratch. The technique demonstrates
an average improvement of 15% in accuracy. Computational efficiency is enhanced by
reducing training time by 30% due to encoded shards and parallelized weak learner training.
Moreover, the unlearning cost is reduced significantly, achieving a 75% decrease.
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6.2.5. DeepObliviate
Definition

In comparison to previous techniques, DEEPOBLIVIATE [15] divides the dataset only
into uniform blocks and trains models independently on each block. Model parameters Pi

are saved after training each block Di to quantify the influence on the model parameters of
unlearned data, called “residual memory”. DEEPOBLIVIATE first computes the original
update vector

Vk = Pk − Pk−1, (4)

representing the change in model parameters from block Dk−1 to Dk. Subsequently, when
retraining without xu, it computes the retrained update vector

V′k = P′k − P′k−1, (5)

where P′k and P′k−1 are the parameter vectors after retraining on Dk and Dk−1 without xu.
The quantification of residual memory ∆k between these vectors, given by

∆k = ∥Vk −V′k∥1 = ∥Pk − Pk−1 − (P′k − P′k−1)∥1, (6)

measures the influence of xu on model parameters. This approach leverages these differ-
ences to decide the point t at which the residual influence of xu becomes negligible and
stop retraining.
Following these calculations, the technique constructs the M′ with parameters initialized
to Pd−1, representing the state of the model parameters up to block Dd−1 before the block
that contains the data to be unlearned Dd is processed. M′ is then retrained on the dataset
{D′d, . . . , Dd+t}, where D′d excludes xu. To integrate the effects of the remaining blocks
{Dd+t+1, . . . , DB} into M′, the authors employ model stitching, where M′ is adjusted as
follows: M′ ← M′ ⊕ (M⊖Md+t). Here, Md+t signifies the model state after training up to
block Dd+t, where the residual memory of xd is considered negligible.

Metric

Under the same experimental conditions, DEEPOBLIVIATE achieves superior results
compared to SISA, including a 5.8% increase in accuracy, 1.01x faster retraining, and a 32.5x
faster prediction speed, all while maintaining equivalent storage requirements across the
datasets evaluated.

6.2.6. ARCANE
Definition

Instead of uniformly dividing the dataset D, ARCANE [16] partitions it based on class
labels. This means that each subset Di contains instances belonging exclusively to a single
class i. This approach ensures that models trained on each Di can focus specifically on
learning and distinguishing features relevant to that particular class. ARCANE employs
information theory principles, such as entropy calculations to identify instances belonging
to class i while treating all other instances as anomalies. After individual one-class classifiers
make their predictions, the final output is the class with the lowest anomaly score. This
score indicates the highest confidence that the sample belongs to that class. ARCANE
aligns to SISA to ensure a fair comparison between these two methods in the following
way: ARCANE’s parameter m = 20 (block number) was aligned with R (slice number) in
SISA. The number of sub-models in ARCANE was equivalent to shard in SISA.
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Metric

ARCANE demonstrated faster retraining times than SISA. ARCANE also maintained
competitive accuracy levels and excelled in handling unbalanced training data. In contrast,
SISA requires balanced data shards.

6.3. Architecture Based: Gradient Ascent

Gradient ascent techniques in machine unlearning represent a strategic reversal of the
traditional gradient descent process used in training machine learning models. Instead of
minimizing the loss function, these methods aim to increase it, effectively removing the
influence of specific data points or patterns from the model. This section reviews several
notable techniques that utilize gradient ascent to achieve unlearning, examining their
methodologies and effectiveness. The subcategory gradient ascent will contain specific
notation, please refer to Table 5 for symbols and definitions.

Table 5. Specific notation for gradient ascent approach.

Symbol Description

e, E Epoch

b, B Batch

s Sensitive Data

η Learning rate

6.3.1. Amnesiac Machine Unlearning
Definition

The paper [17] proposes ”Amnesiac Unlearning”. Amnesiac unlearning seeks to pre-
cisely remove the impact of sensitive data from a neural network by reversing specific
parameter updates made during the training process. The methodology involves tracking
parameter updates ∆θe,b for each batch in each epoch during training. Batches bS that con-
tain sensitive data are identified, and a list of these parameter updates ∆θsb is maintained.
To perform unlearning, the model parameters are adjusted by removing the influence of
these specific updates. Mathematically, let the initial model parameters be θinitial, and the
parameters after training for E epochs, each consisting of B batches, are given by

θM = θinitial +
E

∑
e=1

B

∑
b=1

∆θe,b (7)

To unlearn, the model parameters are adjusted as follows:

θM′ = θM − ∑
sb∈SB

∆θsb (8)

The resulting parameters θM′ exclude the influence of the sensitive data.

Metric

Paper [17] evaluates the proposed amnesiac unlearning technique using three metrics:
accuracy, model inversion attacks, and membership inference attacks. This technique is
compared against naive retraining. For test accuracy, amnesiac unlearning quickly reduces
accuracy on data that are intended to be unlearned, unlike naive retraining, which maintains
high accuracy for several epochs. In model inversion attacks, naive retraining fails to
prevent information leakage, while amnesiac unlearning significantly obscures sensitive
information. In membership inference attacks, naive retraining shows only a gradual
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reduction in recall, remaining effective for two epochs, whereas amnesiac unlearning
reduces recall to near zero immediately.

6.3.2. Unrolling SGD
Definition

Paper [18] introduces a method to reverse the effect of a specific data point xu on
the model by adding back the gradients associated with xu. The process begins with
the model computing predictions for the target data point xu through a forward pass,
generating output logits based on the input data point. Once the forward pass is complete,
the gradient of the loss function concerning the model weights W is computed through
backpropagation. This gradient, denoted as ∂L

∂W , represents the sensitivity of the model’s
predictions to changes in the weights.

To perform the unlearning process, the computed gradient adjustment is then added
back to the current weights Wt. This adjustment aims to exclude the influence of xu from the
model’s predictions. The learning rate, batch size, and the number of epochs are employed
to update the model weights accordingly:

wt+1 = wt + η
e
b

∂L
∂W

∣∣∣∣
W0,xu

(9)

This iterative process allows the model to adapt and effectively unlearn the effect of
xu without necessitating complete retraining from scratch.

Metric

This primary study introduces a new metric, called unlearning error. The unlearning
error is defined as the Euclidean distance between the model weights after training for t
steps and the initial model weights.

Unlearning Error = ∥Wt −W0∥2 (10)

The unlearning error specifically examines the impact of a data point xu on the final
weights of the model when training begins at initial weights W0. It is defined to approximate
the verification error. Verification error involves comparing the terminal weights of a naively
retrained model with the weights of an approximately unlearned model to assess the degree
of unlearning. The calculation of verification errors can be resource-intensive due to the
need to retrain a model from scratch. The paper compares the cost-effectiveness of their
approximate unlearning method with SISA—the cheapest exact unlearning method. They
find that their method, which only requires computing a single gradient, is more efficient and
less storage-intensive than [11]

6.3.3. BAERASER
Definition

The BAERASER framework [20] introduces a machine unlearning process designed to
forget data that trigger backdoor attacks on machine learning models. It begins with trigger
pattern recovery, where a max-entropy staircase approximator is utilized to generate and
identify potential trigger patterns within the victim model. Once the trigger patterns have
been identified, the machine unlearning process is initiated to erase these patterns from
the model’s memory. This process uses gradient ascent optimization to adjust the model
parameters, effectively reversing the influence of the backdoor attack. The optimization is
formulated as

θj+1 = θt +
∂L
∂θt

(11)
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The loss function for machine unlearning incorporates both the cross-entropy loss and
a penalty mechanism to prevent over-unlearning. The loss function is defined as

L = α(LCE(F(θt(xc), yc))− LCE(F(θt(xu), yu)))

+β
M

∑
k=1

Wx
∣∣θj(x)− θ0(x)

∣∣ (12)

Here, LCE denotes the cross-entropy loss function, (xc, yc) represents the clean vali-
dation data, and (xu, yu) represents the trigger pattern data aimed to be forgotten. The
parameters α and β are coefficients that balance the degrees of unlearning and penalty,
respectively. The weights Wx for each parameter dimension are computed to correlate the
penalty with the model’s performance on the validation data.

Metric

The BAERASER unlearning technique is evaluated using attack success rate (ASR) and
model accuracy (Acc) as primary metrics. ASR measures the percentage of poisoned data
misclassified into the attacker’s desired target label, while Acc gauges the overall accuracy
of the model on clean data. BAERASER’s performance is compared to three existing
backdoor defense methods: fine-pruning, fine-tuning, and neural attention distillation.
Experimental results show that BAERASER outperforms these baselines. BAERASER
reduces ASR from nearly 100% to about 10% across various datasets, indicating a marked
improvement in backdoor defense effectiveness. Additionally, BAERASER maintains
less than a 10% drop in Acc, demonstrating its ability to minimize accuracy loss while
significantly lowering ASR.

6.3.4. Forsaken
Definition

At the core of Forsaken [19] lies the mask gradient generator G. Given the current
model parameters θ and predictions on the samples marked for forgetting, G generates
mask gradients δ that indicate the necessary adjustments to the model parameters to
facilitate forgetting. These mask gradients serve as directional cues, guiding the model’s
updates to selectively remove the specified information associated with the forgotten
samples while ensuring minimal disruption to the model’s performance on other tasks.

The unlearning process in Forsaken unfolds iteratively over a series of steps aimed at
refining the model’s behavior. Once the mask gradients are generated, they are used to
update the model parameters θ, nudging the model towards a state where the specified
information becomes less influential in its predictions. To quantify the discrepancy between
the model’s predictions for the forgotten samples and a predefined distribution of non-member
data, Forsaken employs KL divergence DKL as a measure of dissimilarity. By minimizing
the DKL loss, the model’s behavior on the forgotten samples gradually aligns with that of
non-member data, effectively “forgetting” the specified information. To prevent overfitting
during the unlearning process, Forsaken incorporates RL1 into the optimization objective.
This regularization term penalizes large parameter values, promoting smoother updates to the
model parameters and guarding against drastic changes that could compromise the model’s
performance.

Metric

In addition to standard performance metrics such as accuracy, precision, recall, and F1-
score, the paper introduces a metric known as the forgetting rate. It provides a quantitative
measure of the rate at which samples transition from being classified as members of the
training set to non-members after the unlearning process. A higher forgetting rate indicates
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a more effective unlearning method, as it signifies a greater reduction in the model’s
reliance on memorized information. Experimental results show that Forsaken achieves a
significantly higher forgetting rate compared to existing techniques (SISA, Full retraining,
and SMU), indicating its ability to selectively forget specific information.

6.4. Architecture Based: Teacher–Student

The teacher–student framework is widely used in machine unlearning methods, where
a well-trained teacher model guides a student model to shed specific knowledge. Initially,
the teacher model, pretrained on the complete dataset, and the student model, initialized
either randomly or with the teacher’s parameters, are established. Additional models like
generators may be used to create synthetic data. Tailored loss functions, such as Kullback–
Leibler divergence and cross-entropy loss, are then defined to guide the unlearning process.
The student model undergoes training or fine-tuning with these loss functions to either
retain or remove specific knowledge, ensuring alignment with the unlearning objectives.
The following subcategory will contain specific notations. Please refer to Table 6 for symbols
and definitions.

Table 6. Specific notation for teacher–student approach.

Symbol Description

KL Kullback–Leibler (KL) divergence

θ Random weights

JS Jensen–Shannon divergence

ŷi Predicted probability distribution for the i-th data point

6.4.1. Bad Teaching
Definition

The proposed unlearning method [21] utilizes a teacher–student framework with two
types of teachers: competent and incompetent. The competent teacher Ts(x; θ) has learned
from the complete dataset D, while the incompetent teacher Td(x; ϕ) is a smaller model
initialized with random weights. The student model S(x; θ) is initialized with the same
parameters as the competent teacher. The student model is trained to mimic the predictions
of the incompetent teacher for the data points that need to be forgotten D f via minimizing
the Kullback–Leibler (KL) divergence. This helps the student “forget” these data points.
Simultaneously, the student is trained to retain accurate knowledge by mimicking the
predictions of the competent teacher for the data points that should be retained Dr. Mathe-
matically, this objective is expressed as

L(x, lu) = (1− lu) ·KL(Ts(x; θ) || S(x; θ))

+ lu ·KL(Td(x; ϕ) || S(x; θ))
(13)

where lu is the unlearning label.

Metric

Compared to amnesiac unlearning [17], bad teaching achieves lower activation dis-
tance and maintains higher accuracy on forget sets across various datasets. Amnesiac
unlearning damages forget set performance significantly, indicating the Streisand effect,
while bad teaching does not. In addition to traditional metrics, this technique introduces
a metric called the Zero Retrain Forgetting Metric (ZRF). ZRF measures the randomness
in the model’s prediction by comparing them with the incompetent teacher’s predictions.
The ZRF score improves after unlearning with the technique, indicating effective forgetting
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without needing a reference retrained model. For example, the ZRF score of the model
increases from 0.87 to 0.99 after unlearning. Furthermore, the JS-Divergence between the
predictions of the unlearned model and the retrained model is low, indicating that the
output distribution of the unlearned model is very close to the model retrained from scratch.
Additionally, the probability of a successful membership inference attack on the forgotten
set decreases significantly after unlearning. For instance, in the case of forgetting rocket
images, the attack probability drops from 0.982 to 0.002, indicating improved privacy.

6.4.2. Gated Knowledge Transfer
Definition

Gated knowledge transfer [22] is a zero-shot type of unlearning. Its process begins
with the initialization of three components: the teacher model MT , the student model
MS(x; θ), and the generator G(z; ϕ). The teacher model is the pretrained model from which
knowledge is to be transferred. The student model MS(x; θ), with the same architecture
as the teacher, starts with random initialization. The generator G(z; ϕ) also begins with
random parameters and is responsible for creating pseudo samples from noise vectors.
Once initialized, the generator produces pseudo samples by transforming noise vectors
z ∼ N(0, I). These pseudo samples serve as synthetic data points focused on the transferal
of knowledge from the teacher model to the student model. To achieve this, the generator
is updated to maximize the KL-divergence between the teacher’s and student’s output
distributions for the filtered pseudo samples. On the pseudo samples, a band-pass filter is
applied with the intention to not convey information about the forgotten classes. The filter
works by checking the teacher’s predicted probabilities and allowing a pseudo sample to
pass only if the predicted probability for each forget class is less than a threshold ϵ. The
threshold parameter ϵ must be low enough to filter out information about the forget classes
effectively but not so low that no samples pass through the filter. This is stated to prevent
any significant information about the forget classes from being transferred to the student
model.

The student model is updated to minimize a combined loss function. This loss function
comprises the KL-divergence between the teacher and student models’ outputs and an
attention loss. The attention difference serves as a mechanism to encourage the student
model to focus on the same features as the teacher model, thus facilitating effective knowl-
edge transfer. The generator and the student model are updated iteratively. The generator
aims to create pseudo samples that maximize the divergence between the teacher and
student, while the student seeks to minimize this divergence and learn effectively from the
teacher’s knowledge, except the forgotten classes. This iterative process continues until
the models converge. The student model retains knowledge of the retained classes while
forgetting the specified classes.

Metric

The gated knowledge transfer (GKT) technique proposed in this paper was evaluated
against several established methods, including Fisher forgetting (FF) [27], amnesiac un-
learning (AU) [17], and the retrain baseline (RB). The GKT method achieved a significantly
lower Anamnesis Index (AIN) value; this metric is calculated based on the speed of relearn-
ing (how quickly the model can regain knowledge). For example, the GKT method’s AIN
was 0.1 compared to 0.3 for FF and 0.25 for AU. In terms of accuracy on the forget set, the
GKT method consistently achieved near 0% accuracy, indicating that the target information
was forgotten. On the retained set, the GKT method maintained high accuracy, achieving
82% and showing competitive performance while ensuring unlearning.
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6.4.3. Efficient Two-Stage Model
Definition

The proposed technique [23] begins by computing the model output for each data
point within a specified subset. It then identifies pairs of classes with the largest divergence
or discrepancy in their output probabilities. During the training phase, data points in the
designated subset are intentionally mislabeled with classes that are most different from
their true labels. Training persists until the model’s accuracy on subset P descends below
random prediction thresholds. Following the neutralization phase, the subsequent stage
involves knowledge distillation (KD), where the teacher–student relationship is established.
Here, the knowledge from the original teacher model is distilled into the student model
M′. KD facilitates the emulation of information from the teacher model by softening label
probabilities within M′. The soft label knowledge distillation loss is represented by the
following equation:

LKD =
N

∑
i=1

δ(ŷi)δ

(
log

ŷi
yi

)
(14)

where ŷi is from the teacher model and δ(ŷi) is the softened predicted probability distri-
bution. This encourages M′ to generate output probabilities akin to those of the teacher
model, thus fostering knowledge transfer. Concurrently, cross-entropy loss provides an
additional training signal to augment the learning process. The combined loss function
used for training M′D integrates both KD and cross-entropy loss, expressed as

LTOTAL = αLCE + βLKD (15)

Metric

The proposed method is evaluated using accuracy as the primary performance metric.
It compares the performance of three models: the original model, the retrained model
using the proposed technique, and a scratch model. The student model achieves 65.25%
accuracy compared to the model retrained from scratch, which reaches 64.43% accuracy on
the remaining data, showcasing an improvement of 0.82%.

6.4.4. Towards Unbounded Machine Unlearning
Definition

The paper [24] proposes the SCRUB method, where the original model, referred to as
the teacher model, is trained on the full dataset. The student model starts with the weights
of the teacher model. This methodology also uses the KL-divergence between the output
distributions of the teacher and student models. The optimization objective for the student
model is formulated to minimize the following function:

min
wu

α
1

Nr
∑

xr∈Dr

d(xr; wu)

+ γ
1

Nr
∑

(xr ,yr)∈Dr

LCE( f (xr; wu), yr)

− 1
Nu

∑
xu∈D f

d(xu; wu)

(16)

where α and γ are hyperparameters, d is a distance function, Nr is the number of
examples in the retain set, and N f is the number of examples in the forget set. The
student model undergoes an alternating optimization process. Training alternates between
updating the student model on the forget set (max-step) and the retain set (min-step).
Additional min-steps are performed at the end of the sequence to ensure the retain set
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performance is restored. Training stops when the forget set error has increased sufficiently
without harming the retain set error.

SCRUB+R extends SCRUB by incorporating a “rewinding” procedure to address
vulnerabilities to membership inference attacks (MIAs). A reference point for the forget
error is established by constructing a validation set that has the same distribution as the
forget set. SCRUB is then trained while storing model checkpoints at each epoch. At the
end of training, the validation set error is measured to serve as the reference point for the
desired forget set error. The rewinding procedure involves rewinding to the checkpoint
where the forget error is closest to the validation set error, ensuring that the forget set error
is “just high enough” to prevent MIAs.

Metric

In this study, the evaluation of the SCRUB and SCRUB+ unlearning methods is
conducted using three distinct sets of forget-quality metrics tailored to specific applications:
Removing Biases (RB), Resolving Confusion (RC), and User Privacy (UP). The methods
are compared against state-of-the-art approaches, including Retrain, [21,27,28]. Across
the RB scenarios, SCRUB demonstrates robust performance, achieving an average forget
error of 78.4%, outperforming the next best method ([21]) by 15.6%. In RC scenarios,
SCRUB exhibits an average reduction in interclass confusion error of 63.2%, surpassing its
closest competitor (retain baseline) by 12.8%. Notably, in UP scenarios, SCRUB+ showcases
improvements, with a 45.9% decrease in membership inference attacks compared to the
strongest baseline ([21]).

6.4.5. Deep Regression Unlearning
Definition

The Blindspot Unlearning technique [26] is a method devised for the selective removal
of information from deep regression models. It operates through a collaborative optimiza-
tion process involving two distinct models: the Original Fully Trained Model and the
Blindspot Model. The Blindspot Model is initialized randomly and exposed partially to
samples solely from the retain set. It functions as a reference for output distribution and
activation closeness comparisons with the Original Fully Trained Model. The optimization
process integrates three distinct loss functions: loss computation for the retain set samples
in the Original Fully Trained Model (Lr), loss evaluation by contrasting output similarities
between the Original Fully Trained Model and the Blindspot Model (L f ), and assessment
of layerwise activation closeness between both models (Lattn). Mathematically, the final
loss equation is expressed as

L = (1− li f )Lr + li f (L f + Lattn) (17)

where li f =

1 for samples in the forget set

0 otherwise
.

Minimize the combined loss function L through gradient-based optimization tech-
niques. This optimization process updates the parameters ϕ of the Original Fully Trained
Model to selectively remove information related to the forget set while retaining the infor-
mation pertinent to the retained set.

Metric

In comparison to baseline methods such as fine-tuning and gradient ascent baseline
methods, the Blindspot Unlearning technique outperformed both. Finetune on the retain
dataset led to catastrophic forgetting on the forget set, while NegGrad resulted in the
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Streisand effect. The Blindspot Unlearning technique provided error rates on the forgotten
set that were similar to those of the retrained model. This technique presents a lower
attack probability, indicating better privacy preservation. Furthermore, it demonstrates a
Wasserstein distance metric that aligns more closely with the retrained model. Moreover,
the Anamnesis Index values were closest to 1 for the Blindspot Unlearning technique across
different datasets and domains, indicating superior unlearning performance.

6.5. Architecture Based: Scrubbing Weights

The scrubbing weights approach comprises a category of machine unlearning tech-
niques dedicated to modifying weights to diminish the influence of selected data points
or datasets. These methods leverage rigorous mathematical frameworks such as Hes-
sians, Fisher information matrices (FIM), and their approximations to achieve targeted
data removal. By applying strategic transformations and introducing controlled noise into
the weight space, these techniques facilitate selective forgetting while preserving essen-
tial model knowledge. This approach aims to enhance model robustness, privacy, and
adaptability in dynamic learning contexts. The following subcategory will contain specific
notations. Please refer to Table 7 for symbols and definitions.

Table 7. Specific notations for scrubbing weights approach.

Symbol Description

S(θ) Scrubbed model parameters

λ Hyperparameter controlling forgetting

σ Error in approximating the SGD behavior

h Transformation function

F Fisher information matrix (FIM)

n Noise

B−1 Inverse of the Hessian matrix

wu Linear user weights

LMSE Mean square error loss

6.5.1. Eternal Sunshine
Definition

Ref. [27] proposes a selective forgetting procedure tailored for Deep Neural Networks
trained with stochastic gradient descent. The core of the forgetting mechanism involves
a shift in weight space and the addition of noise to the weights. Furthermore, the paper
provides an upper bound on the amount of remaining information in the weights of the
network after applying the forgetting procedure. This suggests that the proposed forgetting
mechanism has a quantifiable effect on reducing the information stored in the model
weights, with an upper limit on the residual information. The optimal scrubbing procedure
is represented in the form

S(θ) = h((θ) + n (18)

where
h((θ) = (θ − (B−1∇LDr((θ)) (19)

where S(θ) are the scrubbed model parameters, h(θ) represents the transformation applied
to θ to forget Du, and n is a noise term following a Gaussian distribution with mean 0 and
covariance matrix Σ. This has two variations: Fisher forgetting and variational forgetting.
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In the first case, the Hessian is approximate with the diagonal of the Fisher information
matrix or a better Kronecker-factorized approximation. So, the equations is as follows:

S(θ) = θ + (λσ2h)
1
4 F−

1
4 (20)

In the second case, instead of computing the FIM, the noise is optimized in the
Forgetting Lagrangian. The author minimizes the proxy:

L(Σ) = En∼N (0,Σ)LDr(θ + n)− λ log |Σ| (21)

Further, the optima Σ is seen as the FIM computed.

Metric

The paper evaluates its technique using several metrics: error on the forgotten cohort
Du, error on the remaining data Dr, relearn time measured in epochs, and an information
upper-bound on retained information. It compares its approach against fine-tuning, nega-
tive gradient, random labels, and hiding methods. Results indicate reductions in error on
Du and Dr, slower relearn times, and lower information bounds compared to alternative
methods.

6.5.2. Forgetting Outside the Box
Definition

Paper [28] extends the selective forgetting framework to consider activations (output
of intermediate layers) rather than just weights as in [27]. It introduces a technique called
NTK-based scrubbing, which leverages insights from the Neural Tangent Kernel theory
to improve selective forgetting. The process begins by linearizing the final activations
around pretrained weights. This involves computing the linear approximation of the
final activations using gradients. Using the linearized activations, the optimal forgetting
function is computed. This function represents the transition from the weights trained
on the complete dataset to the weights that would have been obtained by training on the
retained dataset alone. Mathematically, the optimal forgetting function can be expressed as
follows:

hNTK(θ) = θ + P∇ f0(D f )
T MV (22)

where

• P is a projection matrix that projects the gradients of the samples to be forgotten
onto the orthogonal space to the space spanned by the gradients of all samples to be
retained;

• ∇ f0(D f )
T MV is the matrix whose columns are the gradients of the samples to forget,

computed at θ0.

The final scrubbed weights (SNTK(w)) are obtained by combining the optimal forget-
ting function (hNTK(w)) with the noise (n). SNTK(w) represents the updated weights of the
network after the selective forgetting process. This process discards outdated or irrelevant
information while preserving important knowledge. Noise (n) is added to the optimal
forgetting function to increase robustness and prevent the network from overfitting the
specific features of the data.

Metric

They use the same readout functions of [27] and add a black-box membership inference
attack. In error readout analysis, NTK demonstrates superior performance by minimizing
error rates on both retain and test sets compared to Fisher forgetting, which requires
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excessive noise addition due to large weight space distances. Additionally, NTK surpasses
baselines in relearn time, indicating its efficacy in reducing remaining information about
the forgotten cohort. Robustness against black-box membership inference attacks further
highlights NTK’s superiority, achieving optimal accuracy while Fisher forgetting risks
undesired information leakage.

6.5.3. Mixed Privacy
Definition

The paper [29], instead of linearly approximating the training activation, as stated be-
fore, proposes to train a linearized network directly for forgetting. The goal is to transform
the original deep neural network into a mixed-linear model, which is a combination of
non-linear core weights wc and linear user weights wu. This mixed-linear model, which
can be seen as a first-order Taylor approximation of the effect of fine-tuning the original
deep network, is formulated as follows:

fML(w∗c , wu)(x) = fw∗c (x) +∇w fw∗c (x) · wu (23)

Here,

• fw∗c (x) represents the output of the original deep network with the core weights w∗c ;
• ∇w fw∗c (x) represents the gradient of the output with respect to the core weights w∗c ,

evaluated at x.

The training of the mixed-linear model involves solving two separate minimization prob-
lems:

1. Training Core Weights w∗c :

w∗c = argminwc
LCE( fwc) (24)

2. Training User Weights wu:

w∗u = argminwu
LMSE( fML(w∗c , wu)) (25)

By transforming the original DNN into a mixed-linear model, the authors aim to facilitate
the forgetting process. The optimal forgetting step to delete D f is given by

wu 7→ wu − H−1
Dr (wc)∇wu gDr(wu), (26)

The forgetting update is formulated as the optimal adjustment of wu, achieved by
computing the inverse of the Hessian matrix of the loss function for the core weights
wc evaluated on the remaining data Dr and applying the gradient of the loss function
concerning wu. Since computing the full Hessian matrix is impractical, an auxiliary loss
function L̂Dr (v) is introduced. Finally, to enhance stability and ensure robust forgetting,
random noise is added to the weights.

Metric

The readout functions include error rates on subsets of data, relearn time, activation
distance, and membership attack success. Activation distance quantifies the difference in
final activations between scrubbed and retrained models, providing insight into the residual
information about the forgotten data. The paper compares the proposed method, ML-
forgetting with Fisher forgetting. ML-forgetting outperforms other methods, particularly
in reducing relearn time and activation distance.
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6.5.4. Certified Removal
Definition

The paper [30] introduces certified removal (CR), tailored initially for convex models
but adaptable to non-convex models. For a specific data point within D, C modifies the
model output M(D) such that the resultant model C(M(D), D, x) closely approximates
the model trained on D \ {x}. This closeness is quantified by a probabilistic condition
ensuring that the distributions of outputs under C and under retraining without x are
indistinguishable within a specified tolerance ϵ. Mathematically, the CR mechanism C aims
to satisfy

e−ϵ ≤ P(C(M(D), D, x) ∈ T)
P(M(D \ {x}) ∈ T)

≤ eϵ (27)

where T denotes the set of possible model outputs and ϵ > 0 is a parameter controlling
the level of removal certainty. A key component of this mechanism involves a Newton
step, leveraging the Hessian of the loss function at the current model parameters θ∗. The
Newton update

θ− = θ∗ + H−1
θ∗ ∆ (28)

where ∆ represents the gradient influence of the removed data point on the model parame-
ters θ∗. The Hessian Hθ∗ captures the curvature of the loss function around θ∗, providing a
quadratic approximation that guides the adjustment of θ∗ to θ−. For deep neural networks
and non-convex models, the adaptation involves applying similar principles to the linear
decision-making layer.

Metric

This paper evaluates its certified removal technique primarily through metrics of
accuracy and computational efficiency. Experiments on sentiment analysis and digit
classification tasks using deep neural network feature extractors demonstrate substantial
accuracy gains and efficiency improvements compared to fully private models or retraining
approaches.

6.5.5. The Projective Residual Update
Definition

The Projective Residual Update (PRU), as introduced in the paper [31], aims to effec-
tively remove specific data points from trained machine learning models. Initially designed
for linear models such as logistic and linear regression, PRU’s methodology extends to
nonlinear models by treating them as comprising a fixed feature mapping followed by a
linear or logistic regression layer. This adaptation simplifies the update process by focusing
on the linear components of the model’s structure, particularly the final layers in deep
neural networks.

PRU utilizes synthetic predictions to estimate how the model would predict the
outputs for data points earmarked for removal using the current model parameters. These
synthetic predictions are pivotal because they act as substitutes for the actual outputs that
the model would produce if the identified data points were removed. In the context of
linear regression models, for example, these predictions are straightforwardly computed as
the dot product of the model’s current weights with the feature vector of each data point xi.

The primary objective of PRU is to adjust the model’s current weights so that its
predictions for these synthetic outputs closely align with the actual outputs of the removed
data points. To achieve this alignment, PRU employs optimization techniques such as
gradient descent. Through iterative updates, the model’s weights are adjusted based on
the disparity between the synthetic predictions and the real outputs of the data points
scheduled for removal.
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Metric

PRU typically maintains low L2 distances, indicating minimal deviation from exact
retraining, especially notable in scenarios with large deletion groups. PRU often shows
superior performance in the backdoor injection attack metric compared to [30]. For instance,
while [30] might achieve metrics averaging around 0.2, PRU could achieve significantly
lower values like 0.05. A lower value in the backdoor injection attack metric indicates that
PRU is effective in removing or mitigating the influence of injected features that could
compromise privacy.

6.5.6. Performance Unchanged Model Augmentation (PUMA)
Definition

PUMA [32] updates the model parameters θ to θmod, ensuring minimal disruption to
the model’s predictive capabilities post-data removal. PUMA’s approach uses optimiza-
tion principles, particularly leveraging the Hessian Vector Product for efficient parameter
adjustments. The Hessian Vector Product approximates the impact of changes in model
parameters on the loss function gradients, crucial for optimizing θ in response to removed
data points.
The technique involves two primary steps: First, PUMA formulates an optimization prob-
lem to derive the modified parameters from the original parameters and incorporating
adjustments that mitigate the removal of D f ’s influence; this step ensures that the model’s
overall performance criteria are preserved or improved. Second, PUMA optimizes the per-
turbation factors assigned to the remaining data points Dr \D f ; these factors are optimized
to minimize the performance degradation caused by removing D f , balancing between
sparsity and small changes using regularization techniques.

Metric

PUMA consistently outperforms traditional methods like the Retrain Model and [11]
in several key metrics evaluated in the paper. Specifically, it shows up to a 10% improve-
ment over the original model’s performance when assessing the ability to preserve model
performance after gradually removing data points. Additionally, in terms of effective-
ness in data removal, PUMA reduces the success rate of membership attacks by 20 30%
compared to other techniques such as Amnesiac Machine Learning. Furthermore, PUMA
demonstrates superior efficiency by executing operations 40 50% faster than competing
approaches in scenarios involving random data removal.

6.5.7. Unlearn Features and labels
Definition

Unlearning in [33] involves updating the model parameters when the dataset changes
from the original dataset to a modified dataset. This update is achieved using influence
functions, a concept from robust statistics that measure the impact of individual data points
on the model’s parameters. The technique calculates precise updates by using first-order
and second-order derivatives to reflect the removal or correction of specific data points or
features.
One significant aspect of this approach is its ability to handle feature revocation, which
involves removing entire features from the model. The process starts by identifying data
points where these features are non-zero, then constructing a modified version of the
dataset where these features are set to zero. The model parameters are then adjusted to
account for these changes. Despite the reduction in input dimensionality, the method
ensures that the model’s performance and integrity are maintained through appropriate
adjustments derived from the model’s linear transformations.
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A key consideration in the practical implementation of this technique is its scalability
to large and complex models, such as deep neural networks. Direct computation of the
Hessian matrix for exact updates is computationally prohibitive in such cases. Therefore,
the paper proposes an approximation method for the inverse Hessian matrix. This ap-
proach enables efficient second-order updates that balance computational feasibility with
maintaining the integrity of the model adjustments during unlearning.

Metric

Compared to traditional baselines like retraining and [11], the proposed technique
achieves a 28% improvement in speed while maintaining high fidelity in correcting un-
intended memorization and label poisoning. The technique corrects poisoned labels,
achieving 85% accuracy restoration with 2,500 poisoned labels.

6.6. Federated Unlearning
6.6.1. FedEraser
Definition

FedEraser [34] introduces a federated unlearning methodology aimed at reducing the
influence of specific client data on a global model within federated learning setups. The
primary objective is to adjust the parameters of the global model wglobal to mitigate the
impact of individual client contributions without directly accessing or compromising client
data privacy. This adjustment process involves iteratively modifying wglobal by subtracting
a scaled version of the client’s model parameters wc, denoted as γ ·wc, where γ controls
the magnitude of adjustment.

To operationalize this unlearning process, FedEraser incorporates a client calibration
ratio r, defined as r = Ecali

Eloc
, where Ecali represents the loss of the global model after

unlearning and Eloc signifies the loss of the client’s local model. This ratio guides the
extent to which the client’s influence is adjusted in the global model, ensuring a balanced
approach to privacy preservation and model performance.

Another critical parameter in FedEraser is the retaining interval ∆t, which determines
the frequency of updates to wglobal during the unlearning process. By carefully selecting ∆t,
FedEraser maintains stability in the global model while iteratively reducing the influence
of client-specific data contributions.

Metric

To compare FedEraser, the paper uses two baselines: FedRetrain, which involves
retraining the global model from scratch without the target client’s data, and FedAccum,
which accumulates updates from multiple clients without specific unlearning. For the
Adult dataset, the F1-score for MIAs on the original model is 0.714. After unlearning with
FedEraser, the F1-score drops to 0.563, compared to 0.571 for FedRetrain. The impact of the
calibration ratio (r) is also assessed. For the Adult dataset, with r = 0.1, FedEraser achieves
a prediction accuracy of 85.8% on target data in 10.1 s. With r = 1.0, accuracy decreases
slightly by 0.5%, but time increases to 100.1 s.

6.6.2. FU with Knowledge Distillation
Definition

To eliminate the contribution of a specific client N from the final global model MF,
the paper [35] proposes erasing all historical updates ∆Mt

i from this client for rounds
t ∈ [1, F− 1]. Given N clients participating in each round t, the global model update ∆Mt

can be expressed as

∆Mt =
1
N

N

∑
i=1

∆Mt
i (29)
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To remove the contribution ∆Mt
N of the target client N, the updated model ∆Mt

0 is
recalculated as

∆Mt
0 = ∆Mt −

1
N

∆Mt
N (30)

Summing up these updates across rounds gives the unlearning version of the final
global model MF

0 :

MF
0 = M1 +

N
N − 1

F−1

∑
t=1

∆Mt
0 +

F−1

∑
t=1

ϵt (31)

where ϵt represents the necessary corrections (skew) due to the incremental learning
property of FL. This process mitigates skew accumulation caused by earlier model updates.

Knowledge distillation is employed to refine the unlearning model using the original
global model MF as a teacher and the skewed unlearning model as a student. Soft class
prediction probabilities qi are generated using a softmax function over logits zi:

qi =
exp(zi/T)

∑j exp(zj/T)
(32)

where T is a temperature parameter that controls the smoothness of the probability distri-
bution. Higher values of T produce softer distributions, enhancing model generalization.
These soft probabilities are utilized to label unlabeled data, effectively transferring knowl-
edge from the original model. During distillation training, if labeled data are available,
a weighted average approach is adopted using both hard labels (ground truth) and soft
labels produced by the global model at high temperature T. This approach balances the
objectives, giving higher weight to soft labels to improve robustness and generalizability.
After distillation training, the temperature T is set to 1, refining the unlearning model MF

0
to produce discrete class probabilities suitable for testing scenarios.

Metric

The paper evaluates the proposed unlearning technique using standard metrics to
assess its effectiveness in removing the target client’s influence from the global model.
Comparisons are made against a baseline method of retraining from scratch. Results
indicate a reduction in the attack success rate to zero post-unlearning. Additionally, through
knowledge distillation, the technique achieves model recovery with test accuracy closely
matching that of retraining from scratch.

6.6.3. Pruning
Definition

The federated unlearning technique begins with a pretrained global model that has
been developed through a federated learning (FL) framework. In this initial phase, multiple
clients participate by training local models on their private datasets and then sharing
updates with a central server. This server aggregates these updates to refine the global
model, which learns from a diverse and decentralized dataset. Once the global model has
been established, the next step involves identifying a specific category, or class, that needs
to be removed from the model; this is referred to as the target category.

The core of the unlearning process in [36] is channel pruning. The channels in the
neural network that are most associated with the target category are identified and removed.
This process involves calculating the relevance of each channel to the target category, which
can be achieved using metrics like TF-IDF scores. For instance, the relevance of a channel ci

is measured to determine how significant its contribution is to the target category. Channels
with high relevance scores are pruned, meaning their weights Wi are set to zero or otherwise
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removed from the model. This step ensures that the model’s representation of the target
category is minimized.

After pruning the channels, the global model undergoes a fine-tuning phase to recover
and maintain its performance on the remaining categories. In the federated learning setting,
this involves clients training their local models based on the pruned global model. Each
client performs local training iterations and sends model updates back to the central server.
The server then aggregates these updates, which are averaged or otherwise combined, to
update the global model. This fine-tuning process helps restore the model’s accuracy on
the non-target categories while keeping the pruned channels effectively removed. The
model parameters θ are adjusted using gradient descent methods, where the updates are
computed based on the loss function and applied to the model.

Metric

When compared to Fisher unlearning, the federated unlearning technique demon-
strated superior performance in terms of accuracy and robustness. Fisher unlearning
struggled particularly with high levels of data bias, as it relies on global access to training
data to inject optimal noise for unlearning. This limitation led to reduced accuracy due to
indiscriminate noise application. In contrast, the proposed technique maintained accuracy
on non-target categories (R-Set) and achieved a 0% accuracy on the target category (U-Set),
ensuring effective removal of the target class information without significant performance
degradation.

6.6.4. Efficient Realization
Definition

The technique detailed in the paper “The Right to be Forgotten in Federated Learning:
An Efficient Realization with Rapid Retraining” [37] introduces a sophisticated approach
to federated unlearning. Initially, the unlearning process begins with a federated data
deletion operation. This results in locally deleted datasets, which contain subsets of the
original data with certain samples removed. The process continues with the application of
rapid retraining techniques to update the global model in response to the changes in the
local datasets. Unlike traditional retraining methods that require exhaustive updates to all
model parameters, the proposed technique employs a selective parameter update strategy
based on the Fisher information matrix (FIM). By utilizing the FIM, the unlearning process
can efficiently compute second-order derivatives necessary for parameter updates while
minimizing computational overhead. Furthermore, the technique incorporates momentum
techniques to enhance the stability and convergence speed of the unlearning process.
The technique has limitations regarding the accuracy of the FIM approximation and the
potential for divergence in unstable FL environments. While momentum techniques help
mitigate these issues, further research may be needed to address challenges related to
approximation errors and model convergence.

Metric

In terms of evaluation metrics, the paper compares the proposed technique to baseline
methods such as retraining from scratch. Key metrics include the speed-up factor, which
measures the efficiency of the unlearning process, and the Symmetric Absolute Percentage
Error (SAPE), which quantifies the difference in model performance between the proposed
technique and baseline methods.
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6.6.5. FedRecover
Definition

FedRecover [38] is a method designed to recover a federated learning (FL) global model
after it has been subjected to poisoning attacks. The first step in FedRecover is the storage of
historical data. During each global round, the server stores the model updates submitted by
each client. The second step is the detection of malicious clients. At some point, malicious
clients are detected based on their submitted updates. Detection mechanisms are not part
of FedRecover, but the method assumes that these clients can be identified and removed.
The third step involves the estimation of true model updates. After detecting and removing
the malicious clients, the server needs to estimate the true model updates that would have
been contributed by non-malicious clients. This estimation process is based on the stored
historical updates. The final step is the reaggregation of estimated updates. Using the
estimated true model updates, the server performs a reaggregation process similar to the
standard federated averaging (FedAvg) but excluding the contributions from detected
malicious clients. This reaggregation involves averaging the estimated updates to form a
new global model, effectively recovering the model from the poisoning attacks.

Metric

The performance of FedRecover was evaluated using training error rate, which mea-
sures the accuracy of the global model, and attack success rate (ASR), which assesses the
effectiveness of the attack in altering the model’s predictions. FedRecover was compared
to the train-from-scratch method and fine-tuning using clean datasets. Results showed that
FedRecover achieves training error rate and attack success rate nearly identical to train-
from-scratch, even when False Negative Rate is up to 0.5. Specifically, the training error
rate curves for FedRecover almost overlap with those for train-from-scratch, except when
the False Negative Rate is large (e.g., False Negative Rate ≥ 0.4) for Federated Averaging.
Fine-tuning required a large number of clean examples, around 1000 examples, to achieve
an training error rate and attack success rate comparable to FedRecover.

6.6.6. SFU
Definition

Federated unlearning involves removing the influence of a specific client, say CI , from
the global model. A straightforward approach might involve maximizing the empirical loss
LCI (w) of the target client CI , which can be interpreted as reversing the learning process.
However, this method would adversely affect the contributions from other clients and
degrade the overall model performance. The subspace-based federated unlearning (SFU)
technique in [39] addresses this challenge by modifying the gradient updates in a controlled
manner. The core idea is to project the gradient ascent updates, which aim to increase
LCI (w), onto a subspace that is orthogonal to the input subspace of the other clients. This
ensures that the increase in LCI (w) only affects the components of the model that are
associated with the target client’s data, thereby preserving the contributions from other
clients.

Mathematically, SFU begins by computing the gradient ∇LCI (w) of the target client’s
empirical loss. This gradient is then restricted to a subspace orthogonal to the input
subspace of the remaining clients Cj (j ̸= I). The updated gradient gSFU can be expressed as

gSFU = P⊥∇LCI (w) (33)

where P⊥ is the projection operator onto the orthogonal subspace of the input space of the
remaining clients. The global model update is then performed using this restricted gradient
gSFU , effectively removing the contribution of CI without disrupting the global model’s
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alignment with the other clients’ data. The unlearning process in SFU involves iteratively
applying this restricted gradient ascent to the global model until the contribution of CI is
sufficiently reduced.

Metric

The performance of the SFU technique was evaluated using two primary metrics: the
attack success rate and the model accuracy. SFU reduced the attack success rate to nearly
0%, whereas FU with Knowledge Distillation (UL) and gradient ascent (GA) techniques
achieved rates of 15% and 10%, respectively. This indicates that SFU is highly effective in
eliminating the target client’s contribution without leaving residual effects.

Regarding model accuracy, SFU maintained high performance after unlearning, with
minimal degradation. The model’s accuracy with SFU was 98.5%, compared to 42.76% for
UL and 92.33% for GA. SFU demonstrated superior efficiency in recovering model accuracy,
requiring only one round of training to achieve high accuracy, while UL and GA needed
five or more rounds.

6.6.7. KNOT
Definition

The KNOT technique in [40] introduces a solution to the federated unlearning problem
by leveraging clustered aggregation combined with asynchronous federated learning. The
key innovation in KNOT is the partitioning of clients into clusters, where the global model
aggregation is restricted within each cluster. This strategy limits the scope of retraining
required when a client requests data erasure, thereby reducing the overall computational
cost. Clients {Ck}K

k=1 are partitioned into N clusters {Ln}N
n=1. The server aggregates the

local updates ∆ωk from clients within each cluster independently. The global model is thus
represented as a combination of cluster-specific models ωn, where ωn = 1

|Ln | ∑k∈Ln ∆ωk.
When a client Ck within a cluster Ln requests data erasure, only the clients in Ln need to
retrain, leaving other clusters unaffected. This localized retraining minimizes the ripple
effect of unlearning across the entire network. KNOT also employs asynchronous updates
to further enhance performance. In asynchronous FL, the server does not wait for all clients
to complete their updates; instead, it proceeds with aggregating the updates from faster
clients as soon as they arrive. This asynchronous aggregation allows for faster convergence
and mitigates the delay caused by slower clients.

A crucial component of KNOT is the optimized assignment of clients to clusters, which
is formulated as an optimization problem. The objective is to minimize the wall-clock time
required for unlearning by ensuring that clients are assigned to clusters in a way that
balances training times and cluster sizes. The problem is framed as a lexicographical
minimization problem, where the goal is to minimize the largest value in the match rating
vector f given by lexmin f = (d11x11, . . . , dknxkn, . . . , dKN xKN), subject to constraints that
ensure each client is assigned to a cluster appropriately. This lexicographical minimization
problem is then transformed into a linear programming (LP) problem by leveraging the
properties of separable convex functions and totally unimodular matrices. The LP problem
can be efficiently solved using standard solvers, yielding optimal client–cluster assignments
with minimal computational overhead.

Metric

KNOT achieves an impressive 85% reduction in wall-clock training time compared
to FedEraser, a state-of-the-art unlearning method that utilizes approximation algorithms.
This substantial improvement is evident as KNOT reaches target accuracies in a fraction of
the time required by traditional methods—reducing training times from over 4,400 s to just
660 s in specific scenarios.
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6.6.8. HDUS
Definition

Paper [41] presents a technique called Heterogeneous Decentralized Unlearning with
Seed Model Distillation (HDUS), designed for decentralized learning environments where
clients may have different types of models. The technique addresses the process of handling
unlearning requests, where a client’s contribution needs to be removed from the system
without relying on a central server.

In HDUS, each client has a local dataset and a model trained on those data by min-
imizing a loss function. In addition to their main models, clients maintain seed models
θseed,i, which are simplified versions of their main models. These seed models are distilled
from the main models of neighboring clients using a shared reference dataset Xref,i. The
distillation process aims to align the seed model with the main model by minimizing a
distillation loss:

L∗ = min
θseed,i

L( f (θseed,i, Xref,i), σT( f (θi, Xref,i))) (34)

where σT(·) is a temperature-scaled softmax function used to adjust the alignment process.
For inference, clients use an ensemble model that combines their own main model

f (θi, ·) with the seed models {θseed,j} from their neighbors:

F( f (θi, x), Si) = (1− λ) f (θi, x) + λ
1
K

K

∑
k=1

f (θseed,k, x) (35)

Here, λ is a parameter that controls the balance between the client’s main model and
the seed models from its neighbors. When a client leaves the network and requests that
its contributions be unlearned, HDUS removes the corresponding seed model θseed,j from
its ensemble, effectively erasing the departing client’s influence. The updated ensemble
model is

F( f (θi, x), Si − θseed,j) = (1− λ) f (θi, x) + λ
1

K− 1

K

∑
k=1k ̸=j

f (θseed,k, x) (36)

This process ensures that the unlearning is handled without the need to retrain the
main models.

HDUS supports decentralized learning without a central server and is compatible with
heterogeneous models across different clients. By using seed models, HDUS prevents the
fusion of knowledge across the network, simplifying the unlearning process and making it
more scalable for real-world applications.

Metric

The evaluation involves comparing HDUS to three baseline methods: Isolated stochas-
tic gradient descent, shared incremental Sample-wise Unlearning, and Decentralized
Stochastic Gradient Descent. The metrics used for evaluation include average test ac-
curacy and standard deviation across multiple independent runs. HDUS shows better
performance in heterogeneous model settings, where the models differ in architecture
across clients. In the homogeneous setting, HDUS performs similarly to other distributed
learning frameworks. In the heterogeneous setting, HDUS surpasses the baseline methods
by maintaining a smaller accuracy drop—specifically, an average loss of 1.25% compared
to larger drops in other methods.
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6.6.9. Erase a Client
Definition

The proposed approach in paper [42] is divided into two main phases: local unlearning
at the target client and federated learning post-training involving the server and remaining
clients. In the first phase, local unlearning, the target client reverses its contribution to
the global model by maximizing its local loss function, a process that contrasts with the
typical minimization approach used during training. The local unlearning problem is
framed as a constrained optimization task. Specifically, the target client maximizes its local
empirical risk:

Fi(w) =
1
ni

∑
j∈Di

L(w; (xj, yj)) (37)

The optimization is constrained to an ℓ2-norm ball around a reference model wref, ensuring
that the model parameters remain close to what they would have been had the target client
not participated in training. Mathematically, this is expressed as

max
w∈{v∈Rd :∥v−wref∥2≤δ}

Fi(w) (38)

where δ is a hyperparameter controlling the radius of the ℓ2-norm ball. The reference model
wref is computed as the average of the models from all other clients:

wref =
1

N − 1 ∑
j ̸=i

wj
T−1 (39)

where wT is the global model after T rounds, wi
T−1 is the local model update from client i

in round T − 1, and N is the total number of clients. To solve this optimization problem,
the paper employs Projected Gradient Descent (PGD), where the model parameters are
iteratively updated and projected back onto the constrained region defined by the ℓ2-norm
ball. In the second phase, federated learning post-training, the server and remaining clients
perform additional rounds of federated learning starting from the locally unlearned model
wi

u. This phase aims to fine-tune the model, ensuring that its performance on the retained
clients’ data is restored without the need for full retraining.

Metric

The paper evaluates the proposed federated unlearning technique by comparing its
performance to the baseline of full model retraining, focusing on metrics such as efficacy,
fidelity, and efficiency. In the scenario involving backdoor triggers, the proposed method
reduces the backdoor accuracy to levels comparable to retraining. For example, in the
MNIST dataset with N = 5 clients, the backdoor accuracy drops to around 0.02% using the
proposed method, matching the 0.01% achieved by retraining. Similarly, for the flipped
images scenario, the proposed method achieves a flipped accuracy of approximately 2.5%
in the EMNIST dataset, compared to 2.1% with retraining, demonstrating comparable
efficacy. Regarding efficiency, the proposed method shows a reduction in communication
costs. In the MNIST dataset, achieving a clean accuracy of 98.13% requires 566 MB of
communication with the proposed method, while retraining demands 1039 MB, making
the proposed method 1.8 times more efficient.

6.6.10. QUICKDROP
Definition

QUICKDROP, proposed in [43], enhances federated unlearning by incorporating
Dataset Distillation (DD) to minimize computational costs when removing specific data
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from a trained model. The essence of this approach lies in condensing the original dataset
D into a much smaller synthetic dataset S, where |S| ≪ |D|. This synthetic dataset S
encapsulates the crucial information of D, making it feasible to use S for unlearning instead
of the entire original dataset.

In the QUICKDROP framework, each client i independently distills its local dataset
Di into a corresponding smaller dataset Si. The federated unlearning process is then
restructured to operate on these distilled datasets. The unlearning operation is formally
defined as θ f = U(θ, S f ), where θ f represents the unlearned model, θ is the original global
model, and S f is the distilled version of the dataset D f that must be unlearned. The
objective is to modify the model θ f such that it no longer retains the knowledge from S f

while continuing to perform well on the remaining data D \ D f .
QUICKDROP achieves this unlearning by employing stochastic gradient ascent (SGA)

during the unlearning phase. In this phase, the model parameters are adjusted in a way
that intentionally increases the loss on the target data S f , thereby “forgetting” the learned
information specific to that data. Mathematically, the update rule during the unlearning
phase can be described as

θ ← θ + η∇θℓ(θ, S f ) (40)

where η is the learning rate, and∇θℓ(θ, S f ) is the gradient of the loss function ℓ with respect
to the model parameters, calculated using the synthetic data S f . This gradient ascent step
effectively degrades the model’s performance on the data represented by S f .

After the unlearning phase, the model undergoes a recovery phase to restore its
performance on the remaining data D \ D f . During this recovery, the model is retrained
using the distilled dataset S combined with a small portion of the original data, ensuring
that the model regains its accuracy on the non-target data.

Metric

QUICKDROP’s performance was evaluated using metrics such as testing accuracy on
the forgotten set (F-Set) and the remaining set (R-Set) after the unlearning and recovery
stages. In single-class unlearning scenarios, QUICKDROP effectively reduced the F-Set
accuracy to 0.85% post-unlearning, demonstrating the technique’s ability to remove the
target class information from the model. After the recovery phase, QUICKDROP achieved
an R-Set accuracy of 71.98%, slightly lower than baselines like stochastic gradient ascent
on the original dataset (SGA-OR), Federated Unlearning using Model Pruning (FU-MP),
and retraining the model from scratch (RETRAIN-OR), which had R-Set accuracies ranging
from 72.83% to 73.45%. When tested under sequential unlearning requests, QUICKDROP
consistently reduced the target class accuracy to near zero while restoring the non-target
class accuracy during the recovery phase. Additionally, QUICKDROP exhibited a substan-
tial improvement in computational efficiency, executing unlearning requests 475.2 times
faster than the retraining-based approach.

7. Discussion of Results
In this section, a discussion on machine unlearning techniques is presented, focusing

on their need for fine-tuning and the level of unlearning they achieve. The techniques
vary in their reliance on fine-tuning after modifying data to maintain model performance,
and the analysis examines the prevalence of instance-level versus class-level unlearning
strategies. Instance-level unlearning removes individual data points as requested, while
class-level unlearning allows broader modifications by removing entire data clusters at
once. Key insights and observations are also highlighted.
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7.1. Data Based

The predominance of data-based machine unlearning techniques targeting single or
multiple class levels, as observed in Table 8, can be attributed to the relative simplicity
and efficiency of creating and managing patterns for unlearning entire classes. Creating
and maintaining patterns for unlearning entire classes is less resource-intensive than
handling individual instances. For example, using a trojan trigger or mnemonic code
for a whole class involves maintaining a single pattern per class, rather than a unique
pattern for each data point. This significantly reduces the overhead in terms of storage and
computational complexity, making it easier to implement and maintain. Consequently, the
higher percentage of techniques focusing on class-level unlearning is a natural outcome of
these efficiencies.

Table 8. Fine-tuning requirements and levels of unlearning of data-based techniques.

ID Is Fine-Tuning or
Retraining Necessary? Notes

1 2,+ ✓

Specific details such as the number of
epochs or the amount of data required
for retraining after applying the trojan
trigger were not explicitly mentioned.

2 2,+ ✓
Requires incremental retraining with a
few epochs and a small amount of data
after applying redaction.

3 2,+ ✓
Requires a repair step involving
fine-tuning on a subset of the original
retain set to restore accuracy.

4 1,+ ✓
Fine-tuning may suffice for minor
adjustments without substantial model
reconfiguration.

1 Single or multiple class level. 2 Single instance level. + Refer to Table 3 for information about the primary study.

7.2. Architecture Based
7.2.1. Modular Unlearning

Analyzing the various techniques reveals a common thread: the pursuit of minimizing
retraining efforts, as shown in Table 9. Each iteration in modular unlearning techniques
builds upon previous advancements, striving to streamline the process of updating models
after data removal. This collective endeavor tries to maintain model accuracy and efficiency
within evolving data landscapes. Techniques like those employing differential privacy
or encoded data representations exemplify this trend, aiming to reduce computational
overhead and preserve model integrity without compromising performance. The evolution
towards more efficient retraining strategies underscores the field’s maturation, reflecting
ongoing efforts to operationalize machine unlearning in real-world applications. Further-
more, the predominance of instance-level unlearning techniques in modular architectures
can be attributed to several factors rooted in their architectural design and operational
requirements. This architectural granularity allows for targeted updates and adjustments
at the level of individual instances within these partitions, as observed in Table 9. This
approach underscores a deliberate effort to refine model adaptations precisely where
necessary, optimizing performance without overhauling entire datasets.

An observation from these advancements is the prevalence of SISA in the literature
on machine unlearning. Most reviewed papers (21/37) reference SISA in their related
work or comparative analyses, highlighting its foundational role. This widespread ci-
tation underscores SISA’s influence as a benchmark for evaluating new methodologies
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and innovations in adaptive machine learning systems. By creating consistent methods
for dealing with unlearning requests, SISA has driven progress in making models more
adaptable and reducing privacy risks in changing data environments. Its enduring presence
in scholarly discourse underscores its pivotal role in shaping the trajectory of modular
unlearning research.

Table 9. Fine-tuning requirements and levels of unlearning of modular techniques.

ID Is Fine-Tuning or
Retraining Necessary? Notes

5 2,+ ✓
Details regarding the extent and
methodology of fine-tuning required
were not explicitly mentioned.

6 2,+ ✓
Requires fine-tuning with a specific
subset of data to address the adaptive
nature of the unlearning process.

7 2,+ ✓
Fine-tuning necessary to maintain
performance consistency after
implementing unlearning techniques.

8 2,+ ✓
Incremental retraining required to
ensure the integrity and accuracy of
the model post-unlearning.

9 1,+ ✓ -

10 1,+ ✓ -
1 Single or multiple class level. 2 Single instance level. + Refer to Table 3 for information about the primary study.

7.2.2. Gradient Ascent

The gradient ascent methods require meticulous tracking of each training batch’s con-
tribution during model training. The storage requirements for each batch are proportional
to the model size and number of training steps. When a batch containing sensitive or un-
wanted data is identified for removal, the unlearning process typically involves subtracting
the accumulated parameter updates associated with those data points from the final model
parameters. However, this efficiency comes with its own set of challenges and trade-offs.
Storing the indices of examples participating in each batch and their corresponding updates
requires considerable storage capacity. This can be significant, particularly for large models
and/or extensive training runs [17]. Additionally, this method might cause the model to be
different from what it would have been if those updates were never made, especially with
larger datasets and more complicated training processes.

Another observation from the literature of this type of technique is the predominant
focus on forgetting at the instance level rather than at the level of entire classes (Table 10).
There is an absence of methods explicitly designed to forget entire data classes. This is
because these techniques unlearn one data point at a time, requiring meticulous tracking
and recording of each training batch’s contributions during the model training process.
Consequently, as these techniques adjust model parameters based on specific instances, they
experience a gradual loss of accuracy or performance with each new request for unlearning.

Given the existing research, retraining may not be immediately necessary when the
unlearning involves straightforward adjustments to model parameters or for simpler
models (Table 10). However, in more complex models such as deep neural networks, where
parameters are highly interconnected and changes to individual data points can have ripple
effects across the model, fine-tuning or retraining prove to be beneficial. This ensures that
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the model adapts to the new data distribution post-unlearning and maintains or improves
performance on unseen data.

Table 10. Fine-tuning requirements and levels of unlearning of gradient ascent techniques.

ID Is Fine-Tuning or
Retraining Necessary? Notes

11 2,+ ✓
Some retraining is usually performed
afterward to restore model
performance on non-target data.

12 2,+ x -

13 2,+ ✓ -

14 2,+ ✓
It needs some epochs of training using
clean data and the identified trigger
patterns.

2 Single instance level. + Refer to Table 3 for information about the primary study.

7.2.3. Teacher–Student

All the techniques involving the teacher–student framework inherently perform a
form of fine-tuning due to their operational methodology, as evidenced in Table 11. These
techniques utilize an iterative process, where the student model is progressively adjusted
based on the guidance provided by the teacher model. This approach mirrors fine-tuning,
where the student model undergoes incremental updates to align with the teacher’s outputs
and to unlearn specific data. The iterative nature of these adjustments ensures that the
student model refines its performance continually, similar to how fine-tuning hones a
pretrained model for specific tasks.

Table 11. Fine-tuning requirements and levels of unlearning of teacher–student techniques.

ID Is Fine-Tuning or
Retraining Necessary?

15 1,+ ✓

16 2,+ ✓

17 1,+ ✓

18 2,+ ✓

19 1,+ ✓

20 2,+ ✓
1 Single instance level. 2 Single or multiple class level. + Refer to Table 3 for information about the primary study.

An insight from examining these techniques is the balanced distribution at the scope of
unlearning, showing an equal split between single/multiple class-level and single/multiple
instance-level unlearning, as shown in Table 11. Techniques like bad teaching, where the
student learns from both competent and incompetent teachers, enable class-level unlearning
through generalized learning objectives. Other methods involving generative adversarial
networks and gated knowledge transfer use pseudo samples to facilitate selective unlearn-
ing and ensure the student model forgets targeted information.

While reviewing the techniques described in the literature, it becomes evident that
many rely heavily on distance functions to guide the process of unlearning. By leveraging
distance functions, these methods aim to minimize the discrepancy between the original
model and the adjusted model post-learning. This ensures that retained knowledge re-
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mains intact while forgotten information is effectively erased or modified. However, the
choice and design of these distance functions are pivotal, as they directly influence the
effectiveness and efficiency of the unlearning process. Inappropriate or overly complex
distance metrics may introduce unnecessary computational overhead or obscure insights
into model behavior.

The Student and Teacher Framework section reveals a prevalent trend towards it-
erative methodologies in machine unlearning techniques. The iterative nature ensures
adaptability to dynamic datasets but also highlights a limitation: computational over-
head due to repeated model adjustments. This iterative requirement suggests that while
effectively managing targeted forgetting, these techniques may demand substantial compu-
tational resources, potentially limiting their scalability in real-time or resource-constrained
environments. Upon reviewing the literature, it is also evident that another downside of
these techniques is the reliance on maintaining more than one model simultaneously, which
can be costly in terms of computational resources and storage.

7.2.4. Scrubbing Weights Approach

The scrubbing weights approach encompasses a diverse array of techniques designed
to effectively eliminate the influence of specific data points from machine learning models.
These methods leverage sophisticated mathematical frameworks such as Hessians and
Fisher information matrices to ensure precise data removal grounded in theory. Incorporat-
ing controlled noise into model weights is also a commonly adopted strategy that ensures
efficient forgetting without compromising model performance. To tackle computational
complexities in handling large and intricate models, some approaches utilize influence
functions and approximate Hessian matrices, ensuring scalability and practical feasibility.

However, while these techniques offer robust solutions, they also present inherent
limitations. Despite avoiding full retraining, they often require intricate mathematical
computations and approximations, such as calculating Fisher information matrices or
approximating Hessians, which can introduce computational overhead. Some methods
rely on linear approximations or synthetic predictions, which may not fully capture the
complexities of nonlinear models, potentially leading to suboptimal forgetting outcomes.
Successful implementation hinges on accurate parameter estimation and transformation,
with errors in these approximations posing risks to the effectiveness of data removal.
Moreover, while efforts are made to minimize residual information, challenges persist in
ensuring complete data erasure and preventing information leakage.

A strength identified in the literature is that most of these techniques do not necessitate
retraining or fine-tuning, as indicated in Table 12. Instead, they directly adjust model param-
eters based on calculated modifications that counteract the influence of targeted data points.
This characteristic allows these methods to operate as single-step post-processing proce-
dures, significantly reducing computational time and resource requirements compared to
iterative retraining approaches. One method [31] deviates by iteratively adjusting model
weights, resembling retraining processes to a certain extent, unlike the straightforward
approach of other techniques.

All these methods primarily focus on multiple instance unlearning. This is due to their
reliance on mathematical frameworks designed to handle aggregate data contributions,
making it more efficient to process multiple instances simultaneously rather than focusing
on individual data points.
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Table 12. Fine-tuning requirements and levels of unlearning of scrubbing weights techniques.

ID Is Fine-Tuning or
Retraining Necessary?

21 2,+ x

22 2,+ x

23 2,+ x

24 2,+ x

25 2,+ ✓

26 2,+ x

27 2,+ x
2 Single or multiple class level. + Refer to Table 3 for information about the primary study.

7.2.5. Federated Unlearning

Table 13 shows that most unlearning techniques require some form of retraining or
fine-tuning, despite differences in unlearning granularity. Erasing specific knowledge from
a model often creates gaps or imbalances in its decision-making process. Fine-tuning is
essential to recalibrate the model and ensure it functions correctly without the removed
data. This is especially important in federated learning, where models must generalize
across diverse and decentralized data sources.

Table 13. Fine-tuning requirements and levels of unlearning of federated unlearning techniques.

ID Is Fine-Tuning or
Retraining Necessary? Notes

28 2,+ x -

29 2,+ ✓
Fine-tuning process to integrate the
distilled knowledge effectively

30 1,+ ✓
The pruned model is retrained using
the non-target categories.

31 2,+ ✓
Adjust the model parameters
efficiently based on the FIM updates

32 2,+ x -

33 2,+ ✓
It consists of iteratively applying
restricted gradient ascent

34 2,+ ✓ -

35 2,+ x -

36 2,+ ✓ -

37 1,+ ✓
Fine-tuned using the distilled datasets
from the non-target classes

1 Single or multiple class level. 2 Client level. + Refer to Table 3 for information about the primary study.

In federated unlearning, most techniques focus on client-level contributions, with
fewer methods addressing class-level unlearning and even fewer targeting specific in-
stances. Client-level unlearning is prioritized because federated learning aggregates up-
dates from multiple clients. Removing the influence of a particular client or group of clients
is more straightforward and aligns with the federated structure. Class-level unlearning
involves identifying and removing contributions related to specific classes across all clients.
The limited use of instance-level unlearning in federated settings is likely due to its com-
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plexity and computational demands. Instance-level unlearning requires identifying and
removing the influence of specific data points, which is challenging in a federated system
with decentralized data.

7.3. Dataset

Analyzing dataset usage across different machine unlearning techniques provides
insights into research trends and methodological choices within the field, as illustrated in
Figure 6. CIFAR-10 emerges as a predominant choice across various techniques, reflecting
its suitability for evaluating unlearning methods in complex image classification tasks. Its
diverse range of objects and scenes allows researchers to assess model adaptability and
robustness across different categories, ensuring a comprehensive evaluation of technique
efficacy. MNIST, renowned for its simplicity and well-defined character recognition task, is
frequently utilized in studies focusing on modular unlearning and scrubbing weights ap-
proaches. This dataset facilitates the evaluation of unlearning effects on basic classification
tasks, providing insights into model behavior post-unlearning.

In contrast, specialized datasets such as HAM10000 and VGG-Faces feature promi-
nently in teacher–student approaches, chosen for their relevance to specific applications
like dermatology and facial recognition. These datasets enable researchers to evaluate
unlearning techniques in contexts requiring nuanced model adjustments and fine-grained
knowledge transfer between models. Imagenet, though less frequently used, appears in
studies exploring modular unlearning and scrubbing weight approaches, leveraging its
image diversity to assess technique performance in broader, more complex visual recogni-
tion tasks.

Figure 6. Distribution of datasets utilized across different machine unlearning techniques.

Papers like [30,31], which do not employ any datasets in their evaluations, indicate a
focus on theoretical validation. This trend suggests a dual approach in machine unlearn-
ing research: while leveraging established benchmark datasets for generalizable insights,
researchers also explore domain-specific datasets for task-specific evaluations. Moreover,
almost all the datasets used across the analyzed papers are primarily intended for classifi-
cation tasks. However, notable exceptions such as AgeDB, as observed in [26], demonstrate
a unique suitability for regression tasks due to its annotation of age attributes for various
subjects, encompassing a wide range of ages and identities. This dataset’s utilization un-
derscores the versatility of machine unlearning techniques beyond classification, extending
into domains requiring predictions of continuous outcome variables like age.
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The analysis reveals a predominant use of convolutional neural networks in machine
unlearning research. CNNs are used due to their effectiveness in image classification tasks
and ability to capture spatial hierarchies through convolutional layers. Despite the focus
on CNNs, other neural network architectures, such as Recurrent Neural Networks and
Long Short-Term Memory networks, could also be considered. These architectures are
particularly useful for sequential data and time-series analysis, which opens possibilities
for machine unlearning applications beyond image classification. Incorporating these
neural network types could broaden the scope of machine unlearning research and provide
insights into the unlearning process for different data modalities.

7.4. Architecture

The analysis of architectures used in various techniques reveals several trends and
preferences, as depicted in Figure 7. ResNet, a family of convolutional neural networks, is
extensively used across the studies. ResNet architectures, including ResNet-18, ResNet-
50, and ResNet-20, are known for their residual learning framework, which addresses
the vanishing gradient problem by allowing gradients to flow through the network via
shortcut connections [60]. The numbers in these architectures (18, 50, 20) refer to the depth
of the network—specifically, the number of layers. The increased depth in architectures
like ResNet-50 allows for more complex feature extraction, while the residual connections
help maintain the flow of gradients, thus facilitating the training of very deep networks.
ResNet’s robustness and versatility make it suitable for a wide range of machine unlearning
evaluations. Another common architecture is the VGG family, particularly VGG-16, used in
four papers. VGG-16 [61] employs a stack of convolutional layers with small receptive fields
(3× 3 filters) followed by fully connected layers. The number 16 in VGG-16 denotes the total
number of layers in the network. VGG-16’s design, with its consistent layer structure and
uniform filter size, makes it computationally efficient and straightforward to implement.
This simplicity is an advantage for benchmarking in machine unlearning research, as it
allows for clear comparisons of model performance. The use of VGG-16 suggests a trend
towards leveraging established architectures recognized for their performance in various
computer vision tasks.

Including MobileNetv2 [62] in two studies indicates an interest in efficient and
lightweight models. MobileNetv2 is designed for mobile and embedded vision appli-
cations, suggesting that researchers are considering the implications of deploying machine
unlearning techniques in resource-constrained environments. Additionally, the use of
DenseNet [63] underscores the importance of architectures that enhance feature reuse and
reduce the number of parameters. DenseNet’s dense connectivity pattern helps mitigate
the vanishing gradient problem and improves information flow, making it a choice for
machine unlearning evaluations.

There is also diversity in architecture choices, with some studies employing multiple
architectures to evaluate their techniques comprehensively. For example, one study [9]
uses ResNet-18, All-CNN, and MobileNetv2, while another explores LeNet, ResNet, and
VGG. This approach indicates a trend towards thorough benchmarking across different
model complexities and capacities, ensuring that the proposed unlearning techniques are
robust and generalizable. Furthermore, the analysis also reveals that two papers do not
specify any architectures, focusing instead on linear models and generalizing their findings
to deep neural networks. These studies concentrate on theoretical validation, developing
foundational principles that can be applied broadly. Despite generalizing their results to
neural networks, these papers do not conduct specific experiments or evaluations involving
particular neural network architectures.
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Figure 7. Overview of neural network architectures utilized in machine unlearning technique
evaluations.

7.5. Replicability

The availability of source code or pseudocode significantly influences the replicability
of machine unlearning techniques. Techniques where authors provide comprehensive
source code facilitate easier replication by allowing other researchers to implement and
verify the methods described directly. Pseudocode also plays a positive role in replicability.
While it requires more interpretation than executable code, it provides a structured outline
of the algorithmic steps involved. However, a notable portion of the techniques reviewed in
the table do not provide either source code or pseudocode. This absence poses challenges
to replication efforts, as researchers must rely solely on the methodological descriptions
provided in the papers. Replicating these studies becomes more time-consuming and
prone to interpretation errors, potentially leading to variations in results. The distribution
of papers with pseudocode, source code repositories, and those without is illustrated in
Figure 8.

Figure 8. Distribution of machine unlearning papers by the availability of code repositories, pseu-
docode, or neither.

Figure 9 highlights a diverse range of metrics used across different studies to evaluate
machine unlearning techniques. This variability suggests that there is no universal stan-
dard or consensus on which metrics are most appropriate for assessing the effectiveness
of unlearning approaches. Many studies prioritize metrics related to privacy and security,
such as membership inference and model inversion attacks. These metrics are crucial for
determining the extent to which unlearned models retain sensitive information and their
vulnerability to privacy attacks. Metrics like accuracy on a forgotten set and relearn time
indicate studies’ interest in understanding how unlearning techniques affect model perfor-
mance. This consideration is essential for balancing privacy preservation and maintaining
model effectiveness on retained data. Metrics such as unlearn time and activation dis-
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tance reflect studies’ concerns about the computational efficiency of unlearning techniques.
Techniques that require less computational resources for unlearning are more practical for
deployment in real-world applications.

Figure 9. Distribution of metrics utilized across different machine unlearning techniques.

7.6. Real-World Applications

Machine unlearning has significant real-world applications across various industries
where data privacy, compliance, and security are critical. This section highlights three key
domains where unlearning techniques play a pivotal role: healthcare, finance, and facial
recognition systems.

7.6.1. Healthcare

Patient data privacy and compliance with regulations such as HIPAA and GDPR
necessitate the ability to erase sensitive records efficiently. Machine unlearning techniques
ensure that when a patient revokes consent for data usage, their medical history can
be removed from AI models without requiring a complete retraining process [64]. This
capability is crucial for preventing the unauthorized use of patient data in predictive models
for disease diagnosis, treatment planning, and medical imaging systems [22].

7.6.2. Finance

Financial institutions use AI-driven models for credit scoring, fraud detection, and risk
assessment. However, erroneous or outdated information in these models can lead to biased
decision-making, potentially affecting users unfairly. Machine unlearning allows financial
organizations to update and remove customer data as needed, enhancing compliance with
data protection laws and ensuring fairness in decision-making processes [65]. Additionally,
unlearning methods improve robustness against adversarial attacks targeting financial
models [9].

7.6.3. Facial Recognition

Facial recognition systems rely on vast datasets for training, often containing per-
sonally identifiable information. Machine unlearning enables compliance with privacy
regulations by ensuring that individuals who opt out of such datasets have their data erased
without residual traces in the model [66]. This is particularly relevant for applications
in surveillance, law enforcement, and biometric authentication, where data protection is
a growing concern. Furthermore, unlearning helps mitigate biases in facial recognition
models by allowing targeted removal of biased training samples [67].
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The integration of unlearning techniques into these industries marks a shift towards
more ethical and privacy-preserving AI applications, aligning with global data protection
mandates and user expectations.

7.7. Final Comparison of Machine Unlearning Approaches

To better understand the trade-offs between various machine unlearning strategies,
their key characteristics are summarized and shown in Table 14, focusing on their applica-
bility and limitations across different scenarios.

Table 14. Advantages, disadvantages, and use cases for machine unlearning categories.

Category Advantages Disadvantages Use Cases

Data-Based

- Simplicity and
straightforward
implementation.
- Minimal model
architecture changes.
- Efficient for small
datasets.

- Performance impact for
large-scale data.
- May require retraining or
fine-tuning.
- Limited scalability for
complex models.

- Individual data point or
class removal.
- Privacy-sensitive
applications with
manageable datasets.

Architecture-Based

Modular Unlearning

- Focused removal of
specific modules.
- Minimal impact on
unrelated model
components.

- Requires modular design.
- Not suitable for
monolithic architectures.

- Models with modular or
layered structures (e.g.,
multi-task models).

Gradient Ascent

- Directly modifies weights
to undo learning effects.
- Handles selective
unlearning efficiently.

- High computational cost.
- Risk of overfitting during
weight updates.

- Removing specific data
points or subsets in
non-convex models.

Teacher–Student

- Ensures comprehensive
unlearning via model
distillation.
- Provides provable
forgetting guarantees.

- Requires training a new
“student” model.
- Resource-intensive for
large datasets or models.

- Scenarios requiring high
assurance of unlearning
(e.g., regulatory
compliance).

Scrubbing Weight
Approach

- Targets specific
information encoded in
model weights.
- Preserves model utility for
unaffected data.

- Requires techniques to
identify and scrub relevant
weights.
- May not guarantee full
forgetting.

- Handling sensitive data
encoded in specific parts of
the model.

Federated Unlearning

- Decentralized approach
reduces central
computation.
- Can selectively unlearn
client-specific data.

- Complex implementation.
- Limited ability to unlearn
individual data points
from a client.

- Applications involving
distributed datasets, such
as federated learning in
healthcare or finance.

While the aforementioned methods offer effective solutions for various unlearning
scenarios, scalability remains a critical challenge, particularly for large-scale neural net-
works. Many current techniques, such as gradient ascent unlearning and teacher–student
model distillation, require intensive computational resources and are often impractical
for large-scale architectures due to their iterative nature [68]. A promising direction to
address scalability concerns is leveraging modular and layer-wise unlearning approaches,
which limit modifications to localized network components, significantly reducing com-
putational overhead [69]. Additionally, advances in federated unlearning distribute the
computational burden across decentralized nodes, allowing for more scalable solutions
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in privacy-sensitive applications while maintaining performance efficiency [66]. Future
work should focus on refining scalable unlearning techniques that preserve model integrity
without the need for full retraining, enabling their deployment in real-world, large-scale
AI systems.

8. Conclusions and Future Work
This review examined the field of machine unlearning driven by data privacy reg-

ulations like GDPR and CCPA. By analyzing 37 selected primary studies, it thoroughly
evaluated the foundational principles, key performance metrics, and methodologies used
to assess these techniques in both regression and classification tasks. Special attention was
given to recent advancements, categorizing and detailing unlearning techniques to offer
deeper insights into their evolution, effectiveness, efficiency, and broader applicability. This
work aimed to provide a solid foundation for future research, development, and practical
implementations in data privacy, model management, and compliance.

The challenges of selectively removing data contributions at both client and instance
levels were discussed, highlighting the balance between computational costs and privacy
guarantees. The analysis of various data-based, architecture-based, and federated unlearn-
ing techniques revealed different approaches and their associated fine-tuning requirements
and levels of unlearning achieved. The prevalence of SISA in the literature was noted,
highlighting its foundational role as a benchmark.

We observed the persistent need for fine-tuning in many unlearning techniques and
the varied levels of unlearning they achieve, with a predominant focus on instance-level
forgetting. The reliance on distance functions in guiding the unlearning process was also
observed. A critical challenge identified across various methods is scalability, especially for
large-scale neural networks.

A prominent area of future work is refining scalable unlearning techniques that can
effectively remove specific data while preserving the integrity and utility of the model
on the remaining data. Further research could also address the lack of methods explicitly
designed to forget entire data classes. The variability in evaluation metrics across different
studies also points to a need for a more unified framework for evaluating unlearning
methods. Moreover, exploring the applicability of machine unlearning to a broader range
of neural network architectures beyond the commonly used CNNs and MLPs could be a
valuable direction for future investigation.

Author Contributions: Conceptualization, validation, supervision, project administration, and fund-
ing acquisition: M.E.B.; methodology, software, investigation, data curation, and writing—original
draft preparation: I.D.C. and J.A.Z.; formal analysis: M.E.B., Á.L.V.C., and L.I.B.-L., writing—review
and editing: Á.L.V.C. and L.I.B.-L. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data is contained within the article.

Acknowledgments: The authors would like to thank the Faculty of Systems Engineering, Escuela
Politécnica Nacional, Quito 170517, Ecuador for academic and financial support.

Conflicts of Interest: The authors declare no conflicts of interest.



Computers 2025, 1, 0 53 of 55

References
1. Art. 17 GDPR - Right to Erasure (’Right to Be Forgotten’) - GDPR.eu—Gdpr.eu. 2018. Available online: https://gdpr.eu/article-

17-right-to-be-forgotten/ (accessed on 13 July 2024).
2. California Consumer Privacy Act (CCPA)—Oag.ca.gov. 2024. Available online: https://oag.ca.gov/privacy/ccpa#heading5d

(accessed on 13 July 2024).
3. Nast, C. Now That Machines Can Learn, Can They Unlearn?—Wired.com. 2021. Available online: https://www.wired.com/

story/machines-can-learn-can-they-unlearn/ (accessed on 13 July 2024).
4. Shaik, T.; Tao, X.; Xie, H.; Li, L.; Zhu, X.; Li, Q. Exploring the Landscape of Machine Unlearning: A Comprehensive Survey and

Taxonomy. arXiv 2024, arXiv:2305.06360.
5. Li, C. OpenAI’s GPT-3 Language Model: A Technical Overview—Lambdalabs.com. 2020. Available online: https://lambdalabs.

com/blog/demystifying-gpt-3 (accessed on 13 July 2024).
6. Kitchenham, B. Procedures for performing systematic reviews. Keele Uk Keele Univ. 2004, 33, 1–26.
7. Liu, Y.; Ma, S.; Aafer, Y.; Lee, W.C.; Zhai, J.; Wang, W.; Zhang, X. Trojaning Attack on Neural Networks. In Proceedings of the

Network and Distributed System Security Symposium, San Diego, CA, USA, 18–21 February 2018.
8. Felps, D.L.; Schwickerath, A.D.; Williams, J.D.; Vuong, T.N.; Briggs, A.; Hunt, M.; Sakmar, E.; Saranchak, D.D.; Shumaker, T. Class

Clown: Data Redaction in Machine Unlearning at Enterprise Scale. arXiv 2020, arXiv:/2012.04699.
9. Tarun, A.K.; Chundawat, V.S.; Mandal, M.; Kankanhalli, M. Fast Yet Effective Machine Unlearning. IEEE Trans. Neural Netw.

Learn. Syst. 2024, 35, 13046–13055. https://doi.org/10.1109/tnnls.2023.3266233.
10. Shibata, T.; Irie, G.; Ikami, D.; Mitsuzumi, Y. Learning with Selective Forgetting. In Proceedings of the Thirtieth International Joint

Conference on Artificial Intelligence, IJCAI-21; International Joint Conferences on Artificial Intelligence Organization, Montreal,
QC, Canada, 19–27 August 2021; Zhou, Z.H., Ed.; pp. 989–996. https://doi.org/10.24963/ijcai.2021/137.

11. Bourtoule, L.; Chandrasekaran, V.; Choquette-Choo, C.A.; Jia, H.; Travers, A.; Zhang, B.; Lie, D.; Papernot, N. Machine Unlearning.
arXiv 2020, arXiv:1912.03817.

12. Gupta, V.; Jung, C.; Neel, S.; Roth, A.; Sharifi-Malvajerdi, S.; Waites, C. Adaptive Machine Unlearning. arXiv 2021,
arXiv:2106.04378.

13. Koch, K.; Soll, M. No Matter How You Slice It: Machine Unlearning with SISA Comes at the Expense of Minority Classes.
In Proceedings of the 2023 IEEE Conference on Secure and Trustworthy Machine Learning (SaTML), Raleigh, NC, USA, 8–10
February 2023.

14. Aldaghri, N.; Mahdavifar, H.; Beirami, A. Coded Machine Unlearning. IEEE Access 2021, 9, 88137–88150. https://doi.org/10.110
9/access.2021.3090019.

15. He, Y.; Meng, G.; Chen, K.; He, J.; Hu, X. DeepObliviate: A Powerful Charm for Erasing Data Residual Memory in Deep Neural
Networks. arXiv 2021, arXiv:2105.06209.

16. Yan, H.; Li, X.; Guo, Z.; Li, H.; Li, F.; Lin, X. ARCANE: An Efficient Architecture for Exact Machine Unlearning. In Proceedings of
the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI-22; International Joint Conferences on Artificial
Intelligence Organization, Vienna, Austria, 23–29 July 2022; Raedt, L.D., Ed.; pp. 4006–4013. https://doi.org/10.24963/ijcai.2022
/556.

17. Graves, L.; Nagisetty, V.; Ganesh, V. Amnesiac Machine Learning. arXiv 2020, arXiv:2010.10981.
18. Thudi, A.; Deza, G.; Chandrasekaran, V.; Papernot, N. Unrolling SGD: Understanding Factors Influencing Machine Unlearning.

arXiv 2022, arXiv:2109.13398.
19. Liu, Y.; Ma, Z.; Liu, X.; Liu, J.; Jiang, Z.; Ma, J.; Yu, P.; Ren, K. Learn to Forget: Machine Unlearning via Neuron Masking. arXiv

2021, arXiv:2003.10933.
20. Liu, Y.; Fan, M.; Chen, C.; Liu, X.; Ma, Z.; Wang, L.; Ma, J. Backdoor Defense with Machine Unlearning. arXiv 2022,

arXiv:2201.09538.
21. Chundawat, V.S.; Tarun, A.K.; Mandal, M.; Kankanhalli, M. Can Bad Teaching Induce Forgetting? Unlearning in Deep Networks

using an Incompetent Teacher. arXiv 2023, arXiv:2205.08096.
22. Chundawat, V.S.; Tarun, A.K.; Mandal, M.; Kankanhalli, M. Zero-Shot Machine Unlearning. IEEE Trans. Inf. Forensics Secur. 2023,

18, 2345–2354. https://doi.org/10.1109/tifs.2023.3265506.
23. Kim, J.; Woo, S.S. Efficient Two-stage Model Retraining for Machine Unlearning. In Proceedings of the 2022 IEEE/CVF Conference

on Computer Vision and Pattern Recognition Workshops (CVPRW), New Orleans, LA, USA, 19–20 June 2022; pp. 4360–4368.
https://doi.org/10.1109/CVPRW56347.2022.00482.

24. Kurmanji, M.; Triantafillou, P.; Hayes, J.; Triantafillou, E. Towards Unbounded Machine Unlearning. arXiv 2023, arXiv:2302.09880.
25. Chen, K.; Wang, Y.; Huang, Y. Lightweight machine unlearning in neural network. arXiv 2021, arXiv:2111.05528.
26. Tarun, A.K.; Chundawat, V.S.; Mandal, M.; Kankanhalli, M. Deep Regression Unlearning. arXiv 2023, arXiv:2210.08196.
27. Golatkar, A.; Achille, A.; Soatto, S. Eternal Sunshine of the Spotless Net: Selective Forgetting in Deep Networks. arXiv 2020,

arXiv:1911.04933.

https://gdpr.eu/article-17-right-to-be-forgotten/
https://gdpr.eu/article-17-right-to-be-forgotten/
https://oag.ca.gov/privacy/ccpa#heading5d
https://www.wired.com/story/machines-can-learn-can-they-unlearn/
https://www.wired.com/story/machines-can-learn-can-they-unlearn/
https://lambdalabs.com/blog/demystifying-gpt-3
https://lambdalabs.com/blog/demystifying-gpt-3
https://doi.org/10.1109/tnnls.2023.3266233
https://doi.org/10.24963/ijcai.2021/137
https://doi.org/10.1109/access.2021.3090019
https://doi.org/10.1109/access.2021.3090019
https://doi.org/10.24963/ijcai.2022/556
https://doi.org/10.24963/ijcai.2022/556
https://doi.org/10.1109/tifs.2023.3265506
https://doi.org/10.1109/CVPRW56347.2022.00482


Computers 2025, 1, 0 54 of 55

28. Golatkar, A.; Achille, A.; Soatto, S. Forgetting Outside the Box: Scrubbing Deep Networks of Information Accessible from
Input-Output Observations. arXiv 2020, arXiv:2003.02960.

29. Golatkar, A.; Achille, A.; Ravichandran, A.; Polito, M.; Soatto, S. Mixed-Privacy Forgetting in Deep Networks. arXiv 2021,
arXiv:2012.13431.

30. Guo, C.; Goldstein, T.; Hannun, A.; van der Maaten, L. Certified Data Removal from Machine Learning Models. arXiv 2023,
arXiv:1911.03030.

31. Izzo, Z.; Smart, M.A.; Chaudhuri, K.; Zou, J. Approximate Data Deletion from Machine Learning Models. arXiv 2021,
arXiv:2002.10077.

32. Wu, G.; Hashemi, M.; Srinivasa, C. PUMA: Performance Unchanged Model Augmentation for Training Data Removal. arXiv
2022, arXiv:2203.00846.

33. Warnecke, A.; Pirch, L.; Wressnegger, C.; Rieck, K. Machine Unlearning of Features and Labels. arXiv 2023, arXiv:2108.11577.
34. Liu, G.; Ma, X.; Yang, Y.; Wang, C.; Liu, J. FedEraser: Enabling Efficient Client-Level Data Removal from Federated Learning

Models. In Proceedings of the 2021 IEEE/ACM 29th International Symposium on Quality of Service (IWQOS), Tokyo, Japan,
25–28 June 2021; pp. 1–10. https://doi.org/10.1109/IWQOS52092.2021.9521274.

35. Wu, C.; Zhu, S.; Mitra, P. Federated Unlearning with Knowledge Distillation. arXiv 2022, arXiv:2201.09441.
36. Wang, J.; Guo, S.; Xie, X.; Qi, H. Federated Unlearning via Class-Discriminative Pruning. arXiv 2022, arXiv:2110.11794.
37. Liu, Y.; Xu, L.; Yuan, X.; Wang, C.; Li, B. The Right to be Forgotten in Federated Learning: An Efficient Realization with Rapid

Retraining. In Proceedings of the IEEE INFOCOM 2022 - IEEE Conference on Computer Communications, London, UK, 2–5 May
2022. https://doi.org/10.1109/infocom48880.2022.9796721.

38. Cao, X.; Jia, J.; Zhang, Z.; Gong, N.Z. FedRecover: Recovering from Poisoning Attacks in Federated Learning using Historical
Information. arXiv 2022, arXiv:2210.10936.

39. Li, G.; Shen, L.; Sun, Y.; Hu, Y.; Hu, H.; Tao, D. Subspace based Federated Unlearning. arXiv 2023, arXiv:2302.12448.
40. Su, N.; Li, B. Asynchronous Federated Unlearning. arXiv 2023, arXiv:2207.05521.
41. Ye, G.; Chen, T.; Nguyen, Q.V.H.; Yin, H. Heterogeneous Decentralized Machine Unlearning with Seed Model Distillation. arXiv

2023, arXiv:2308.13269.
42. Halimi, A.; Kadhe, S.; Rawat, A.; Baracaldo, N. Federated Unlearning: How to Efficiently Erase a Client in FL? arXiv 2023,

arXiv:2207.05521.
43. Dhasade, A.; Ding, Y.; Guo, S.; marie Kermarrec, A.; Vos, M.D.; Wu, L. QuickDrop: Efficient Federated Unlearning by Integrated

Dataset Distillation. arXiv 2023, arXiv:2311.15603.
44. Cao, Y.; Yang, J. Towards Making Systems Forget with Machine Unlearning. In Proceedings of the 2015 IEEE Symposium on

Security and Privacy, San Jose, CA, USA, 17–21 May 2015; pp. 463–480. https://doi.org/10.1109/SP.2015.35.
45. Sekhari, A.; Acharya, J.; Kamath, G.; Suresh, A.T. Remember What You Want to Forget: Algorithms for Machine Unlearning.

arXiv 2021, arXiv:2103.03279.
46. Dwork, C.; Roth, A. The algorithmic foundations of differential privacy. Found. Trends® Theor. Comput. Sci. 2013, 9, 211–407.

https://doi.org/10.1561/0400000042.
47. Bharati, S.; Mondal, M.R.H.; Podder, P.; Prasath, V.S. Federated learning: Applications, challenges and future directions. Int. J.

Hybrid Intell. Syst. 2022, 18, 19–35. https://doi.org/10.3233/his-220006.
48. Shao, J.; Lin, T.; Cao, X.; Luo, B. Federated Unlearning: A Perspective of Stability and Fairness. arXiv 2024, arXiv:2402.01276.
49. Menditto, A.; Patriarca, M.; Magnusson, B. Understanding the meaning of accuracy, trueness and precision. Accredit. Qual. Assur.

2007, 12, 45–47. https://doi.org/10.1007/s00769-006-0191-z.
50. Jansen, S.C.; Martin, B. The Streisand Effect and Censorship Backfire. Int. J. Commun. 2015, 9, 16.
51. Serrà, J.; Surís, D.; Miron, M.; Karatzoglou, A. Overcoming catastrophic forgetting with hard attention to the task. arXiv 2018,

arXiv:1801.01423.
52. Qu, Y.; Yuan, X.; Ding, M.; Ni, W.; Rakotoarivelo, T. Learn to unlearn: Insights into machine unlearning. IEEE Computer 2024, 57,

79–90.
53. Wang, R. Redefining Machine Unlearning: A Conformal Prediction-Motivated Approach. arXiv 2025, arXiv:2501.19403.
54. Li, J.; Wei, Q.; Zhang, C.; Qi, G.; Du, M.; Chen, Y. Single Image Unlearning: Efficient Machine Unlearning in Multimodal Large

Language Models. arXiv 2024, arXiv:2405.12523.
55. Shrivastava, A.; Ahirwal, M.K. Refining of Learning in Human Decision Making Models: A Step Towards Machine Unlearning.

In Proceedings of the 2024 International Conference on Integrated Circuits, Communication, and Computing Systems (ICIC3S),
Una, India, 8–9 June 2024.

56. Baumhauer, T.; Schöttle, P.; Zeppelzauer, M. Machine Unlearning: Linear Filtration for Logit-based Classifiers. arXiv 2020,
arXiv:2002.02730.

57. Chen, R.; Yang, J.; Xiong, H.; Bai, J.; Hu, T.; Hao, J.; Feng, Y.; Zhou, J.T.; Wu, J.; Liu, Z. Fast Model Debias with Machine Unlearning.
arXiv 2023, arXiv:2310.12560.

https://doi.org/10.1109/IWQOS52092.2021.9521274
https://doi.org/10.1109/infocom48880.2022.9796721
https://doi.org/10.1109/SP.2015.35
https://doi.org/10.1561/0400000042
https://doi.org/10.3233/his-220006
https://doi.org/10.1007/s00769-006-0191-z


Computers 2025, 1, 0 55 of 55

58. Jia, J.; Liu, J.; Ram, P.; Yao, Y.; Liu, G.; Liu, Y.; Sharma, P.; Liu, S. Model Sparsity Can Simplify Machine Unlearning. arXiv 2024,
arXiv:2304.04934.

59. Loog, M.; Viering, T. A Survey of Learning Curves with Bad Behavior: Or How More Data Need Not Lead to Better Performance.
arXiv 2022, arXiv:2211.14061.

60. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. arXiv 2015, arXiv:1512.03385.
61. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2015, arXiv:1409.1556.
62. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. arXiv

2019, arXiv:1801.04381.
63. Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. arXiv 2018,

arXiv:1608.06993
64. Zhou, J.; Li, H.; Liao, X.; Zhang, B.; He, W. A Unified Method to Revoke the Private Data of Patients in Intelligent Healthcare

with Audit to Forget. Nat. Commun. 2023, 14, 6255.
65. Lindstrom, C. Evaluation Metrics for Machine Unlearning. Preprints 2024. https://doi.org/10.20944/preprints202409.1925.v1.
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