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Hand Gesture Recognition (HGR) using electromyography (EMG) signals is a challenging problem due to the 
variability and noise in the signals across individuals. This study addresses this challenge by examining the effect 
of incorporating a post-processing algorithm, which filters the sequence of predictions and removes spurious 
labels, on the performance of a HGR model based on spectrograms and Convolutional Neural Networks (CNN). 
The study also compares CNN vs CNN-LSTM to assess the influence of the memory cells on the model. The 
EMG-EPN-612 dataset, which contains measurements of EMG signals for 5 hand gestures from 612 subjects, was 
used for training and testing. The results showed that the post-processing algorithm increased the recognition 
accuracy by 41.86% for the CNN model and 24.77% for the CNN-LSTM model. The inclusion of the memory 
cells increased accuracy by 3.29%, but at the cost of 53 times more learnables. The CNN-LSTM model with post-
processing achieved a mean recognition accuracy of 90.55% (SD=9.45%). These findings suggest new paths for 
research in HGR architectures beyond the traditional focus on the classification and feature extraction stages. 
For reproducibility purposes, we made publicly available the source code in Github.
1. Introduction

Hand Gesture Recognition (HGR) involves recognizing the specific 
class of hand gesture from a predefined set of movements and iden-
tifying the exact moment when the gesture is performed (Benalcázar 
et al., 2017). HGR has a wide range of applications, including bion-
ics, video games, sign language recognition, and medicine (Luh et al., 
2015, Rafiee et al., 2011, Riillo et al., 2014, Saggio et al., 2020, Saponas 
et al., 2009, Sathiyanarayanan & Rajan, 2016, Shi et al., 2018, Zhu & 
Yuan, 2014). One approach for HGR is the use of surface electromyogra-
phy (EMG) signals. EMG signals are electrical signals that are generated 
by the contraction of skeletal muscles (Farina et al., 2014, Reaz et al., 
2006, Rodriguez-Falces et al., 2012). These signals are recorded by plac-
ing small electrodes on the skin overlying the muscles being studied 
(non-invasive) or directly inserting a needle electrode into the muscle 
tissue (invasive). Invasive methods, such as intramuscular EMG or im-
plants (Hahne et al., 2016), provide more accurate measurement of the 
EMG signal but are impractical for general use. Non-invasive methods, 
such as surface electromyography (referred to as EMG in this work), 
are less precise but more practical for general use. Surface electromyo-

* Corresponding author.
E-mail addresses: lorena.barona@epn.edu.ec (L.I.B. Barona López), jonathan.a.zea@ieee.org (J. Zea), angel.valdivieso@epn.edu.ec (Á.L. Valdivieso Caraguay), 

grams are bioelectric signals that provide information on the intensity 
and duration of muscle activation. These signals are obtained by mea-
suring the aggregate activity of motor units from electrodes placed on 
the skin over the muscle of interest (Gerdle et al., 1999).

1.1. Structure of a HGR model

The structure of a Hand Gesture Recognition (HGR) model typically 
consists of five stages: data acquisition, pre-processing, feature extrac-
tion, classification, and post-processing (Barona López et al., 2020, Be-
nalcázar et al., 2020). In the data acquisition stage, various technologies 
such as vision sensors (Zhu & Yuan, 2014), Inertial Measurement Units 
(IMU) (Moschetti et al., 2016), sensor gloves (Jiménez et al., 2017, Pal-
lotti et al., 2021), and EMG (Benalcázar et al., 2020, Benatti et al., 2017, 
Pallotti et al., 2021, Shi et al., 2018) are utilized. The pre-processing 
stage involves techniques such as rectification and filtering (Benalcázar 
et al., 2018, 2017, Neto & Christou, 2010). In the feature extraction 
stage, common methods include Mean Absolute Value (MAV), Root 
Mean Square (RMS), standard deviation (SD), variance (VAR), as well as 
automatic feature extraction methods like CNNs (Chen et al., 2020, Shi 
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et al., 2018, Ullah et al., 2020, Wang et al., 2017). For the classification 
stage, various Machine Learning techniques are employed, including 
k-Nearest Neighbors (kNN) (Jiménez et al., 2017), Support Vector Ma-
chines (SVM) (Saha et al., 2015), Random Forests (Joshi et al., 2017, 
Sohn et al., 2016), and feed-forward neural networks (Tsironi et al., 
2017). Finally, in the post-processing stage, common methods involve 
filtering consecutive repetitions, removing different labels from the 
mode gesture, applying a threshold, or utilizing velocity ramps (Barona 
López et al., 2020). It’s important to note that HGR systems must work 
in real-time. In that respect, according to (Benatti et al., 2017) the com-
puting time must be less than 300 ms, or below 100 ms according to 
(Farrell & Weir, 2007). Thus, when analyzing HGR systems, it is impor-
tant to consider the trade-off between accuracy and processing time.

1.2. Types of HGR models

There are two types of Hand Gesture Recognition (HGR) models: 
general models and user-specific (or individual) models. A general 
model is trained with data from multiple individuals and is designed 
to recognize samples from any new person. On the other hand, user-
specific models are trained with data from a specific individual and 
can only process samples from that individual. These models tend to be 
more precise, but require training a model for each new subject. Among 
the best accuracy results for user-specific models are 98.33% (Seok 
et al., 2018), 95.32% (Benalcázar et al., 2020), and 94.20% (Barona 
López et al., 2020). Some general models have achieved results such 
as 87.53% (Jaramillo-Yanez et al., 2019), 85.08% (Chung & Benal-
cázar, 2019), 83.5% (Song et al., 2018), and 80.31% (Barona López 
et al., 2020). However, it is important to note that comparing these re-
sults should be done with caution. As Atzori et al. pointed out, it is 
fundamental to compare accuracy only when the number of classes is 
comparable (Atzori et al., 2016). Even more, works in the literature use 
different EMG sensors, electrode placements, sets of gestures, and num-
ber of individuals, among other factors. For example, in (Seok et al., 
2018) 3 gestures are classified and tested over 1 subject, in (Song et 
al., 2018) 6 gestures are classified over 6 subjects, in (Jaramillo-Yanez 
et al., 2019) 5 gestures are classified over 60 subjects, and in (Vás-
conez et al., 2022) 11 gestures are classified over 85 subjects. As can 
be observed, the common factor in the literature is the relatively small 
sample size on which HGR models are evaluated. Results obtained with 
a small sample size can not be generalized to a variety of people, which 
is especially important in the case of EMG signals, where the effect of 
inter-personal variability is well known (Guidetti et al., 1996, Hug et 
al., 2010, Wojtara et al., 2014). To obtain statistically significant re-
sults, this work uses a large dataset of 612 subjects, with 50% of the 
subjects being used for training and 50% for testing (hold-out). Using a 
hold-out method allows us to reduce biases from other types of model 
validation techniques such as cross-validation (Varma & Simon, 2006).

The development of general models for Hand Gesture Recognition 
(HGR) has not been extensively studied in the literature. Many re-
searchers have primarily focused on the development of user-specific 
models. However, the inherent variations in the EMG signal, along 
with the challenges posed by inter and intra-personal variability in 
the distribution of EMG data (Rodriguez-Falces et al., 2012) make it 
challenging to extrapolate user-specific architectures to general models. 
User-specific models are commonly trained with traditional (or shal-
low) Machine Learning algorithms, and cannot be solved with Deep 
Learning as it would be infeasible to obtain such a large dataset from a 
single person. Additionally, shallow ML methods often require manual 
feature selection which can be tedious, time-consuming, and inflexi-
ble (Janiesch et al., 2021). Deep Learning, on the other hand, can be 
a viable alternative for general models as it can be trained with more 
data and can adapt to different subjects. Convolutional Neural Networks 
(CNNs) can be used for automatic feature extraction, which has the ad-
vantage of automated feature learning to extract discriminative feature 
2

representations with minimal human effort (Janiesch et al., 2021). Long 
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Short-Term Memory Networks (LSTMs) can also be used to learn from 
sequences by modeling time dependencies and forming a memory (Ja-
niesch et al., 2021).

In this study, we explore the potential of spectrograms combined 
with CNNs for Hand Gesture Recognition. This innovative approach, 
which has already demonstrated promising outcomes in the realm of 
speech recognition (Kingsbury et al., 1998, Satt et al., 2017), is now be-
ing applied to HGR. Our research addresses a significant gap in the 
current literature by examining the impact of post-processing algo-
rithms on the performance of HGR models. Through this investigation, 
we aim to advance the field of HGR and pave the way for future re-
search directions.

The remainder of this paper is organized as follows. Section 2
presents a comprehensive study of the related works in the field. Sec-
tion 3 provides a detailed description of the proposed HGR model. In 
Section 4, the experimental process is described including model tun-
ing, validation, and evaluation in terms of classification and recognition 
accuracy. Finally in Section 5, the conclusions of this research are pre-
sented, along with suggestions for future work in the field.

2. Related works

Several studies in the literature have applied CNNs to the HGR prob-
lem (Wang, Fu, et al., 2023, Wang, Zhang, et al., 2023, Zhang & Zhang, 
2022). For instance, Atzori et al. (2016) used a simple CNN architecture 
to classify approximately 50 gestures of one of the Ninapro databases, 
and found that the more influential factors in the results were the shape 
of the first layer, the initial weights, the data augmentation procedures 
and the learning rate. For his part, Yang et al. (2019) explored an ap-
proach of using the raw information of the EMG signals as input of 
the CNNs, comparing a time domain and a frequency domain repre-
sentation using 2 public dataset, with good results only in the dataset 
CapgMyo-Dba. In the study conducted by Asif et al. (2020), a com-
prehensive analysis was performed to understand the effects of various 
hyperparameters, such as learning rate and number of epochs, on the 
accuracy of the model. The study concluded that the selection of these 
parameters is crucial to the overall efficiency of the network (Asif et al., 
2020). Chamberland et al. (2023) developed EMaGer, a flexible, and ex-
tensible 64-channel HD-EMG sensor that can adapt to various forearm 
sizes. In addition, they implemented a CNN-based model that is robust 
to shifts. However, it is not robust against longitudinal shifts. This work 
additionally underscores the challenges associated with finer motions 
beyond gesture classification. Also, Shanmuganathan et al. (2020) pro-
poses a method that employs R-CNN and wavelet feature extraction 
for hand gesture recognition using EMG signals. The model achieved 
high results, with an accuracy rate of 96.48%. The dataset used for this 
study comprises ten subjects performing four distinct gestures. How-
ever, the requirement for electrodes to be placed in specific positions 
poses a practicality challenge for real-world applications. In Sunil et al. 
(2023) was utilized a CNN to extract spatial features in parallel with an 
LSTM that extracts temporal features. This approach achieved a remark-
able accuracy of 98.01% on NinaPro DB2. However, the complexity of 
the model may not allow real-time performance. Similarly, Yang et al. 
(2021) proposed a two-stage framework for HGR using MVMD and sep-
arable CNN, that may not be suitable for real-time applications due to 
the computational cost of the neural network. Other works have opted 
or included LSTM networks. For instance, in (Ghislieri et al., 2021) 
was demonstrated the feasibility of using LSTM networks for the ac-
curate detection of muscle activity in EMG signals without the need for 
background-noise estimations. Another work (Cai & Zhu, 2021) used 
CNNs with LSTM for extracting spatial and temporal features, however, 
it still requires professional domain knowledge as it used additionally 
handcrafted EMG features. A similar study by Li et al. (Li & Langari, 
2022) proposed a CNN-LSTM network to classify 5 dynamic hand ges-
tures in 5 different limb positions, and found out that the gesture classi-

fication accuracy of the CNN-LSTM is influenced by the dynamic gesture 
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Fig. 1. The stages of a Hand Gesture Recognition model. a) CNN, b) CNN-LSTM.
selection, the inter-personal variability and the limb position. In (Zhao 
et al., 2022) used Fuzzy logic with the inclusion of LSTM networks to 
take into account the temporal correlation of the EMG signal in the en-
tire window, and were able to classify up to 4 hand gestures. For his 
part, Antonius et al. (Antonius & Tjahyadi, 2021) combined CNNs with 
a recurrent neural network, similar to LSTM, with good results, but 
only on a very limited number of simple gestures. Similarly, another 
study (Toro-Ossaba et al., 2022) developed a LSTM network for HGR of 
5 gestures only with 4 EMG channels, but obtained an accuracy reduc-
tion of 12% during real-time testing allegedly because of small changes 
in the armband position and noise. In (Karnam et al., 2022), Karman et 
al. combined CNN with a bidirectional LSTM to learn both inter-channel 
and bidirectional temporal information in an end-to-end manner. Other 
techniques such as transfer learning, cross-domain or sensor fusion have 
been explored. For instance, Bird et al. (Bird et al., 2020) analysed a 
cross-domain transfer learning approach with CNN between electroen-
cephalographic EEG and EMG signals representing the biological waves 
as images, obtaining good preliminary results. Also, Tryon et al. (Tryon 
& Trejos, 2021) fused EEG and EMG to classify one gesture with CNN, 
with the objective to find relationship not yet found when using manual 
or automatic feature extraction from a unique source, but their results 
showed a small improvement gain when using EEG/EMG with respect 
of only EMG. For his part, Chen et al. (Chen et al., 2020) applied trans-
fer learning from a base CNN architecture, but required 2 new samples 
per gesture for fine tuning.

2.1. Evaluation metrics

When evaluating the performance of Hand Gesture Recognition 
(HGR) models, it is important to consider the metrics used. While 
traditional classification metrics such as precision (Tam et al., 2021), 
F1-score (Jaramillo-Yánez et al., 2020), or classification accuracy (Cai & 
Zhu, 2021) are commonly used in the literature, they may not fully cap-
ture the performance of a model in real-time scenarios. In this work, we 
propose the use of recognition accuracy as an additional evaluation met-
ric. Recognition accuracy measures the alignment of the predicted class 
vector with the ground truth (Zea & Benalcázar, 2019) and has been 
shown to be a more appropriate metric for evaluating HGR models. The 
metric that has traditionally been used is classification accuracy (Weir, 
2018). However, this metric can be problematic for HGR systems. When 
evaluating the complete EMG signal, it does not reflect real-time op-
eration and is impractical for most applications. On the other hand, 
segmenting the EMG signal and evaluating each window separately may 
simulate real-time operation, but it does not account for the fact that 
any incorrect classification in a middle window could be disastrous in a 
real-time application. For example, imagine a drone that receives a sud-
den command to land or a robotic arm that suddenly drops an object. To 
address this issue, post-processing algorithms have been developed to 
have a smooth transition between the noGesture state and the predicted 
hand gesture without spurious predictions. Former research has shown 
that while classification accuracy may seem high, when analyzing the 
whole sequence of predictions, the recognition accuracy is extremely 
low. Using recognition accuracy allows us to measure this and the im-
3

portance of post-processing algorithms.
Fig. 2. a) EMG sensor and EMG signals example, b) the 5 hand gestures of the 
EMG-EPN-612 dataset.

3. Material and methods

In this section, we describe the proposed architecture for tackling 
the HGR problem based on EMG signals, as illustrated in Fig. 1. We 
implemented and compared two Deep Learning architectures: a CNN 
and a CNN-LSTM. These architectures are composed of five stages: 
data acquisition, pre-processing, feature extraction, classification, and 
post-processing. The only distinction between the two models is the 
addition of an LSTM layer between the feature extraction and classifi-
cation stages in the CNN-LSTM model. The pseudocode of the proposed 
method is presented in Algorithm 1. In the following subsections, we 
will provide a detailed explanation of each stage.

Algorithm 1 Real-time HGR model.

Input: 𝑖, 𝐸 ∈ℝ[𝑡×8] ⊳ 𝐸: EMG signal
Output: 𝑖, 𝑆𝑖 ⊳ 𝑆 : vector of predictions
1: 𝑊 ←𝑊 𝐼𝑁𝐷𝑂𝑊 𝐼𝑁𝐺(𝐸, 300) ⊳ 𝑊 : portion of the EMG signal
2: 𝑐 ← 1
3: while 𝑐 <= 8 do ⊳ loop by channel
4: 𝑊𝑐 ← channel c of W
5: 𝜓 ←Ψ(|𝑊𝑐 |) ⊳ Ψ: rectification and filtering function
6: 𝑀𝑐 ← 𝑆𝑇𝐹𝑇 (𝜓) ⊳ 𝑀𝑐 : spectrogram of channel 𝑐 using STFT
7: 𝑐 ← 𝑐 + 1
8: end while
9: Λ ← (𝑀1, 𝑀2, ..., 𝑀8) ⊳ Λ ∈ℝ[13×24×8]

10: 𝑌𝑖 ← 𝐼𝑁𝐹𝐸𝑅𝐸𝑁𝐶𝐸(Λ, 𝑚𝑜𝑑𝑒𝑙) ⊳ model is either CNN or CNN-LSTM
11: 𝑆𝑖 ← 𝑃𝑂𝑆𝑇𝑃𝑅𝑂𝐶𝐸𝑆𝑆𝐼𝑁𝐺(𝑌𝑖) ⊳ View Algorithm 2
12: 𝑖 ← 𝑖 + 1

3.1. Data acquisition

In this study, we utilized the EMG-EPN-612 dataset (Benalcazar et 
al., 2020) for our experimentation. This dataset is intended for use in 
the development and benchmarking of hand gesture recognition models 
based on EMG signals. This dataset contains measurements of EMG and 
IMU signals for 5 hand gestures. Fig. 2 depicts the EMG sensor along 
with the 5 hand gestures used in this work. The device used for the ac-
quisition is equipped with eight EMG dry surface electrodes at 200Hz. 
In addition to this, it incorporates a 9-axes inertial measurement unit 

(IMU) that measures linear, angular motion and orientation, at 50Hz. 



L.I.B. Barona López, F.M. Ferri, J. Zea et al.

Table 1
Characteristics of the EMG-EPN-612 dataset.

Parameter Value

Num. subjects 612
Male | female percentage 66% | 34%
Num. training subjects 306
Num. testing subjects 306
NUm. channels 8
EMG sample frequency 200 Hz
IMU sample frequency 50 Hz
ADC resolution 8 bits
Num. gestures 5
Num. samples per class 50
EMG samples per subject 300
Hold-out 50%
Time recording per sample 5 seconds

Classes
6 (wave in, wave out, fist,

open, pinch and noGesture)

The device utilizes Bluetooth Low Energy (BLE) for wireless connectiv-
ity. The characteristics of this dataset are summarized in Table 1. The 
data acquisition process was executed indoors, with an average room 
temperature of 24 °C. The dataset is divided into two subsets, with one 
subset containing 306 subjects for training and validation, and the other 
containing 306 subjects for testing. The EMG samples of the training 
and validation subset have the corresponding class and ground truth in-
formation freely available. In contrast, the ground truth of half of the 
samples in the testing subset is not publicly accessible. The utilization 
of the online testing platform is encouraged to ensure the prevention 
of overfitting or manipulation of the testing accuracy results (Barona 
López et al., 2020). The online evaluation platform associated with 
the dataset allows for the comparison of different models’ performance 
in terms of classification and recognition accuracy. This can facilitate 
advancements in the field of gesture recognition, contributing to appli-
cations such as human-computer interaction, prosthetics, and more. The 
technical validation of the quality and reliability of the dataset consisted 
of sample size calculation, a channel cross-correlation analysis, and an 
outlier score computation.

3.2. Data feeding and pre-processing

An EMG sample is denoted as a matrix 𝐄 = (𝐞(1), ..., 𝐞(𝑡))𝑇 ∈ℝ[𝐿×8]. 
Here, 𝑡 = {1, 2, ..., 𝐿} represents a discrete time instant and 𝐿 ∈ ℤ+

is the number of sample points in the EMG signal. The vector 𝐞(𝑡) =
(𝑒1, ...𝑒8) ∈ℝ8 at time instant 𝑡 is composed of the measurements from 
the 8 channels of the device. Each measurement 𝑒𝑐 ∈ℝ corresponds to 
the 𝑐th channel and falls within the range [-1, 1]. During real-time ex-
ecution, 𝐿 denotes the size of the data buffer streamed by the device. 
However, during training, 𝐄 represents an EMG sample from the EMG-
EPN-612 dataset. In this dataset, the average length of the samples is 
approximately 𝐿 ≈ 1000.

We employed a sliding window approach to process segments of the 
EMG signal consecutively. A window width of |𝑊 | = 300 sample points 
was selected experimentally (equivalent to a portion of 1.5 seconds of 
the signal). The portion of the EMG signal viewed through a window 
𝑖 is denoted with the matrix 𝐖(𝑖) = (𝐞(𝑡𝑖 − 299), ..., 𝐞(𝑡𝑖))𝑇 ∈ ℝ300×8, 
where 𝑡𝑖 is the last time instant of the corresponding i𝑡ℎ window. In 
Algorithm 1, 𝐖(𝑖) is obtained in line 1. To simulate online scenarios, 
the models are fed with consecutive windows one at the time, (i.e., 
𝑡1 = |𝑊 |, 𝑡2 = |𝑊 | +𝑠, 𝑡3 = |𝑊 | +2 ×𝑠, ..., 𝑡𝑖 = |𝑊 | +(𝑖 −1) ×𝑠) where 𝑠 is 
the distance between consecutive windows (a.k.a. stride), view Fig. 3.a. 
In the validation experiments, we compared the performance of two 
different values of stride, 𝑠 = 15 and 𝑠 = 30, and selected 𝑠 = 30.

We performed initial processing on the EMG signals by rectifying 
the matrix 𝐖(𝑖) using the absolute value function |𝐖(𝑖)|. Subsequently, 
we applied a digital low-pass Butterworth filter, denoted as Ψ. The pur-
4

pose of this filtering step is to attenuate the signal and minimize noise 
Intelligent Systems with Applications 22 (2024) 200352

interference. The filter Ψ is designed with an order of 5 and a cutoff fre-
quency of 10 Hz. These parameter were selected to achieve a balance 
between the number of spectrograms and their temporal resolution. 
This pre-processing methodology aims to work with the envelope of 
the EMG signals. According to the mathematical model by Shwedyk et 
al. (1977), an EMG signal can be modeled as Gaussian noise modulated 
by a second low-frequency Gaussian process (envelope) that encodes 
the movement activity.

At a given time instant 𝑡, by applying the filter channel-wise, we 
obtained the matrix 𝜓 = Ψ(|W(𝑖)|). In Algorithm 1, 𝜓 is obtained in 
line 5. Fig. 3.b illustrates this rectification and filtering procedure. Next, 
we calculate the spectrogram of the filtered and rectified matrix 𝜓 . 
The spectrogram generates a time-frequency representation of the input 
window by dividing it into segments and applying the Discrete Fourier 
Transform (DFT) on each segment. We set the segment size to 24 sam-
ple points and the number of overlapping samples to 12 points, view 
Fig. 3.c. The frequency range is set to [0 − 12] Hz, which determines 
the temporal and frequency resolution of the feature maps generated 
by the spectrogram calculation. The DFT is applied to each segment of 
the window, creating the matrix X ∈ ℂ13×24, Fig. 3.d. The spectrogram 
of the c𝑡ℎ channel is then calculated as M𝑐 = |X|2, as shown in Fig. 3.e. 
In Algorithm 1, 𝐌𝑐 is obtained in line 6. For each channel of the EMG, 
we perform the aforementioned calculation, leading to the formation of 
a tensor 𝚲 = (M1, M2, ..., M8) ∈ℝ[13×24×8]. In Algorithm 1, 𝚲 is obtained 
in line 9. This tensor serves as the input for the feature extraction stage 
and is depicted in Fig. 3.g.

3.3. Feature extraction

We utilize CNNs as a feature extraction method (LeCun et al., 2015), 
that extracts time-frequency domain features from the spectrograms. 
The proposed CNN approach incorporates multiple blocks of parallel 
convolutions and max-pooling, drawing inspiration from the “Inception 
modules” employed in GoogLeNet (Szegedy et al., 2015). The parallel 
convolution block is depicted in Fig. 4. This block includes different 
convolution filters sizes (1 × 1, 3 × 3 and 5 × 5) that allows the network 
to extract a wide range and diverse types of features. The output size of 
the parallel convolution block is [13 × 24 × 72].

The structure of the feature extraction stage comprises of 6 blocks 
of parallel convolutions, along with 2 residual connections. The use of 
residual connections is essential to avoid the problem of vanishing/ex-
ploding gradients, and also enables faster training (He et al., 2016). 
In the proposed feature extraction module, a residual connection is 
established between the input of block 2 and the output of block 3. Ad-
ditionally, a second residual connection connects the input of block 4 
with the output of block 5. The cross-channel normalization after block 
6 has a channel window size of 5. This configuration is demonstrated in 
Fig. 5.

3.4. Classification

In this study, we conducted a comparison between two different 
approaches for classification. The first approach is the CNN model, il-
lustrated in Fig. 6.a. In this model, the feature maps 𝚲 obtained from 
the feature extraction stage are flattened and passed through a fully 
connected layer consisting of 6 neurons, corresponding to the number 
of classes. The output of the fully connected layer is then processed by 
the softmax activation function to calculate the probabilities of belong-
ing to each class. The resulting class output is determined by selecting 
the class with the highest probability, provided it exceeds a threshold of 
𝑇 = 50%. Otherwise, the class noGesture is predicted. The second model 
is a CNN-LSTM model, depicted in Fig. 6.b. This model includes the se-
quence folding and sequence unfolding layers required by the recurrent 
network. The sequence folding layer is used to process the elements that 
are in a sequence one by one in order to apply the different convolu-

tion and pooling operations to each element of the sequence indepen-
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Fig. 3. Pre-processing and spectrogram generation.
Fig. 4. The structure of the parallel convolution block.

dently (Hochreiter & Schmidhuber, 1997). We utilized an LSTM layer, 
known for its ability to capture long-term dependencies in sequence 
data (Hochreiter & Schmidhuber, 1997). For the LSTM layer, we se-
lected 128 hidden units. The output of the LSTM layer is then passed to 
a fully connected layer with 6 neurons, followed by softmax activation 
and a classification layer. This process yields the resulting class output 
with the highest probability. To determine the final class 𝑌𝑖, we apply a 
threshold of 𝑇 = 50%. Feature extraction and classification are carried 
on by the inference step of the neural networks, represented in line 10
of Algorithm 1. For ease of replication, the code for this work is publicly 
5

available at https://github .com /laboratorioAI /2023 -HGR5 -CNN _LSTM
Fig. 5. Structure of the feature extraction module formed with 6 parallel con-
volution blocks and 2 residual connections.

3.5. Post-processing

The models described are applied on the adjoining sliding win-
dows of each EMG, producing a sequence of class predictions, where 
the output of the neural network 𝑌𝑖 is the i𝑡ℎ label on the sequence. 
The post-processing stage is intended to improve the recognition ac-
curacy by removing and filtering spurious predictions in the sequence. 
The sequence obtained after post-processing is denoted as 𝑆 , line 11 of 
Algorithm 1. For further clarity, the pseudocode of the proposed post-

processing is described in Algorithm 2. The input of the algorithm is 

https://github.com/laboratorioAI/2023-HGR5-CNN_LSTM
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Fig. 6. Structure of the proposed a) CNN model and b) CNN-LSTM model.

Fig. 7. Post-processing stage, a) addition of skipped labels, b) replacement of 
spurious labels.

the vector of predictions 𝑌[1∶𝑖+1] up to window 𝑖 + 1. From 𝑌[1∶𝑖+1] is 
obtained the mode gesture 𝑔, ignoring the class noGesture 𝑛𝑔. In Algo-
rithm 2, 𝑔 is obtained in line 3. In the case of the first window (𝑖 = 1), 
𝑆𝑖 is set as “𝑛𝑜𝐺𝑒𝑠𝑡𝑢𝑟𝑒”, line 1 in Algorithm 2. When 𝑌𝑖 is different 
from 𝑔, the algorithm further checks if the previous prediction 𝑌𝑖−1 , 𝑔
and the next prediction 𝑌𝑖+1 are equal. If it is the case, it means that 
the current label 𝑌𝑖 is an outlier and should be replaced with the mode 
𝑔, lines 5-7 in Algorithm 2. If it is not the case, it means that the cur-
rent label 𝑌𝑖 is not an outlier and should be preserved. Therefore, the 
algorithm assigns 𝑌𝑖 to 𝑆𝑖, lines 8-9 in Algorithm 2. The described algo-
rithm is designed to address two scenarios: the first scenario is during 
the classification of early windows, when the HGR model tends to oscil-
late in its predictions. For instance, as depicted in Fig. 7.a, the incorrect 
label 𝑛𝑔 is replaced with the mode class 𝑔. The second scenario occurs 
when there is no significant muscle activity, but due to noise or other 
artifacts, the HGR model predicts a class. This scenario is illustrated in 
Fig. 7.b where the algorithm replaces the incorrect label 𝑜𝑔 with 𝑛𝑔. 
Note that Algorithm 2 introduces a delay in the HGR model’s response 
because it requires 𝑌𝑖+1 to modify 𝑆𝑖. This delay spans one window and 
is equivalent to the value of the stride (75 - 150 ms).

4. Results and discussion

This section presents the results obtained from the evaluation of the 
proposed HGR models. The analysis is divided into two parts: Validation 
6

and Testing. The Validation subsection focused mainly on the tuning of 
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Algorithm 2 Post-processing algorithm.
Input: 𝑖, 𝑌[1∶𝑖+1], 𝑆[1∶𝑖−1] ⊳ 𝑌 : vector of predictions
Output: 𝑆𝑖 ⊳ 𝑆 : vector of predictions after post-processing
1: 𝑔 ←𝑀𝑂𝐷𝐸(𝑌[1∶𝑖]) ⊳ 𝑔: mode of the labels ignoring noGesture
2: if 𝑖 = 1 then
3: 𝑆1 ← }}𝑛𝑜𝐺𝑒𝑠𝑡𝑢𝑟𝑒ε
4: else
5: if 𝑌𝑖 ≠ 𝑔 then
6: if 𝑌𝑖−1 = 𝑔 ς 𝑔 = 𝑌𝑖+1 then
7: 𝑆𝑖 ← 𝑔

8: else
9: 𝑆𝑖 ← }}𝑛𝑜𝐺𝑒𝑠𝑡𝑢𝑟𝑒ε

10: end if
11: else
12: 𝑆𝑖 ← 𝑌𝑖

13: end if
14: end if

Table 2
Characteristics and Hyper-parameters of the CNN and CNN-LSTM 
models.

Hyper-parameter Value

Window size 300
stride 30
Network input size 13x24x8
solver Adam
Num. of learnables 219 190 (CNN model)

11’652 790 (CNN-LSTM model)
Num. training epochs 10
Initial learning rate 0.001
Learning rate decay 0.2
Drop period 8
Training time [approx] 6 h.
Prediction time 25.48 ± 16.80 ms (CNN model)

34.41 ± 39.32 ms (CNN-LSTM model)
Training hardware Intel Xeon Gold 6252,

24/48 cores @2.1Ghz,
256GB RAM
GPU Nvidia Quadro P4000 8GB

Mini-batch size 1024 (CNN model)
64 (CNN-LSTM model)

Sequence length
(CNN-LSTM model)

sequences truncated to the same
length as shortest sequence)

Layer output mode
(CNN-LSTM model)

sequence

hyperparameters, with the majority being selected heuristically. Table 2
displays the selected hyper-parameters used for training the models. 
For the parameters that had the most impact on performance, such as 
stride and post-processing, rigorous experiments were conducted. The 
Testing subsection consisted of evaluating the selected models of each 
type (CNN and CNN-LSTM) using the public platform of the EMG-EPN-
612 dataset. The results of this evaluation are extensively analyzed, and 
a comparison with other state-of-the-art models is also presented.

4.1. Validation: stride selection

The experiments conducted with the validation subset (306 sub-
jects) of the EMG-EPN-612 dataset compared two stride configurations 
(𝑠 = 15 and 𝑠 = 30). For these experiments only the CNN model was 
used. Fig. 8 shows classification and recognition accuracy using differ-
ent strides and post-processing. On the left half, the model does not 
use post-processing, and achieves an accuracy of 97.58% with stride 
15, and 97.39% with stride 30. On the right half, the model includes 
post-processing, and achieves the same classification for both strides. 
Recognition accuracy is the metric most benefited by post-processing, 
increasing from 28.73 to 88.40% with stride 15, and from 38.8 to 
93.31% with stride 30. Fig. 8 indicates that post-processing improves 
recognition accuracy for both strides, from 28.73% to 88.40% for stride 

15, and from 38.8% to 93.31% for stride 30. Fig. 8 also suggests that 
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Fig. 8. Classification and recognition accuracy of the validation experiments using the CNN model: stride 15 vs stride 30.
Table 3
Results on the testing subset of the EMG-EPN-612 dataset 
(306 subjects).

Classification
accuracy

Recognition
accuracy

CNN
No PP.

90.62% ± 9.58% 45.40% ± 15.51%

CNN-LSTM
No PP.

92.00% ± 8.82% 65.78% ± 15.51%

CNN
post-processing

90.62% ± 9.58% 87.26% ± 11.14%

CNN-LSTM
post-processing

92.00% ± 8.82% 90.55% ± 9.45%

stride 30 leads to a higher accuracy, specially the recognition accuracy 
with post-processing. Based on these results, a stride of 𝑠 = 30 was se-
lected.

4.2. Testing

We evaluated the proposed models on the testing subset of the EMG-
EPN-612 dataset using its online public evaluator system (Laboratorio 
de Investigación en Inteligencia y Visión Artificial “Alan Turing”, 2019). 
This evaluator is a closed system with intended samples for testing with 
no public available labels. The results obtained from the evaluation sys-
tem are utilized to compare the performance of the CNN and CNN-LSTM 
models, both with and without the post-processing algorithm. Based on 
this comparison, a model will be chosen for further analysis.

4.2.1. Comparison of CNN, CNN-LSTM and post-processing

In Table 3, we present the classification and recognition results ob-
tained by evaluating the proposed general models on the testing subset. 
Four different configurations were compared: CNN or CNN-LSTM, in 
conjunction with or without post-processing. It can be observed that the 
classification accuracy is independent of post-processing, as shown in 
the CNN model (90.62% ± 9.58%) and the CNN-LSTM model (92.00% 
± 8.82%). The inclusion of the LSTM increased the classification ac-
curacy only by 1.38%, and did not significantly change the standard 
deviation, for it had a reduction improvement of less than 1%. In 
terms of recognition accuracy, without post-processing the LSTM in-
creased recognition accuracy by 20.38% (from 45.40% ± 15.51% to 
65.78% ± 15.51%), while with post-processing, it increased only by 
3.29% (from 87.26% ± 11.14% to 90.55% ± 9.45%). It is clear that the 
post-processing had a larger impact in performance. In fact, due to the 
post-processing algorithm, the recognition accuracy increased 41.86% 
(from 45.40% ± 15.51% to 87.26% ± 11.14%) for the CNN model, and 
24.77% for the CNN-LSTM model (from 65.78% ± 15.51% to 90.55% 
7

± 9.45%). Including post-processing increased the recognition accuracy 
Table 4
Results by sex on the testing subset (202 male M, 104 fe-
male F).

Sex
Classification
accuracy

Recognition
accuracy

CNN
M 90.56% ± 10.36% 87.06% ± 12.07%
F 90.74% ± 7.89% 87.65% ± 9.11%

CNN-LSTM
M 92.02% ± 9.55% 90.53% ± 10.21%
F 91.96% ± 7.25% 90.58% ± 7.83%

in all cases, whereas it had no impact on classification accuracy. This 
finding evidences the limitations of relying solely on classification ac-
curacy for assessing HGR, and instead recognition accuracy should be 
preferred. Although the CNN-LSTM models demonstrated superior per-
formance compared to the CNN models, it resulted from a significant 
increase in network size (53-fold more learnable parameters, view Ta-
ble 2). Instead, a relatively simple post-processing algorithm can lead 
to a more substantial improvement in overall performance. This high-
lights the significance of post-processing algorithms in HGR models and 
the potential for further progress in this area.

The standard deviation obtained is around 10% in all configura-
tions tested. This behavior has been observed consistently in previous 
studies (Barona López et al., 2020) and is likely due to the inherent 
inter-personal variability of EMG signals. In terms of processing time 
per window, the CNN and CNN-LSTM models achieved times of 25.48 
± 16.80 ms and 34.41 ± 39.32 ms, respectively, demonstrating their 
real-time capabilities.

In Table 4, we present the results segmented by sex. The average 
classification and recognition accuracy were similar for males and fe-
males in both models. For instance, the classification accuracy in the 
CNN model was 90.56% for males vs 90.74% for females. A comparable 
scenario was witnessed regarding the recognition accuracy of the CNN-
LSTM model. male obtained 90.53% for male vs 90.58% for female. On 
the contrary, the standard deviation for females was consistently lower 
in both models for both metrics (around 2.5%). For the CNN model, it 
was observed that the standard deviation was 2.47% lower for classifi-
cation and 2.96% lower for recognition accuracy in females compared 
to males. In relation to the CNN-LSTM model, the standard deviation for 
classification and recognition accuracy was 2.3% and 2.38% lower, re-
spectively, in females compared to males. The lower standard deviation 
observed in females compared to males could be due to several fac-
tors. One possible factor is the anatomical and physiological differences 
between males and females, which may affect the EMG signal charac-
teristics. Additionally, it is possible that the motor skills and muscle 
activation patterns of females are more consistent than those of males, 
resulting in less variability in the EMG signals. However, further re-

search is needed to determine the underlying reasons for this difference.
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Fig. 9. Confusion matrix of the CNN-LSTM model.

Fig. 10. Recognition accuracy by specific users for the CNN-LSTM model with post-processing.
4.2.2. Analysis of the CNN-LSTM model

The confusion matrix presented in Fig. 9 provides a detailed break-
down of the correct and incorrect predictions made by the CNN-LSTM 
model for each class. The model demonstrates an overall classification 
accuracy of 92.0% on the test data. The model exhibits the highest pre-
cision, 98.6%, for the 𝑛𝑜𝐺𝑒𝑠𝑡𝑢𝑟𝑒 class. This implies that the model’s 
prediction for 𝑛𝑜𝐺𝑒𝑠𝑡𝑢𝑟𝑒 is accurate 98.6% of the time. On the other 
hand, the 𝑜𝑝𝑒𝑛 class has the lowest precision at 85.8%, indicating that 
when the model predicts 𝑜𝑝𝑒𝑛, it is correct 85.8% of the time. In terms 
of recall, the 𝑛𝑜𝐺𝑒𝑠𝑡𝑢𝑟𝑒 class again stands out with the highest value of 
99.4%. This means that the model correctly identifies 𝑛𝑜𝐺𝑒𝑠𝑡𝑢𝑟𝑒 99.4% 
of the time when it is indeed the true class. Conversely, the 𝑜𝑝𝑒𝑛 class 
has the lowest recall at 86.8%, suggesting that when the true class is 
𝑜𝑝𝑒𝑛, the model correctly predicts it 86.8% of the time.

Fig. 10 is a visual representation of the accuracy of correct recog-
nition among different users. The horizontal axis denotes each the user 
id. On the other hand, the vertical axis signifies the percentage of cor-
8

rect recognition achieved by each user. The blue dots scattered across 
the chart represent the accuracy of each individual user. These dots 
provide a clear picture of the variation in recognition accuracy among 
different users. Overlaying these blue dots is an orange area, which il-
lustrates the range of one standard deviation from the mean accuracy. 
This area provides a sense of the dispersion or variability in the data. 
It shows where the majority of individual accuracies lie relative to the 
average. Speaking of the average, the mean accuracy across all users is 
90.55%. This is a high average, suggesting that the recognition system 
generally performs well. However, the standard deviation is 9.45%, in-
dicating a substantial spread in the accuracy scores around this mean. 
The range of accuracies is quite wide, with the lowest obtained accu-
racy being as low as 47.33%. This wide range suggests that the task’s 
success may heavily depend on individual factors. These could include 
the user’s familiarity with the system, their method of interaction, or 
even inherent personal characteristics. In conclusion, while the system 
shows a high average accuracy, there is a significant variation in in-
dividual user performance. This variation highlights the importance of 

considering individual user factors when evaluating the system’s overall 
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Table 5
Comparison with other studies found in the literature.

Model Recognition acc. N. subjects

SVM
(Jaramillo-Yanez et al., 2019) 87.5% ± 4.13% 60
Autoencoder
(Chung & Benalcázar, 2019) 85.08% ± 15.21% 60
Orientation Correction
(Barona López et al., 2020) 80.3% 306
Prop. CNN model 87.26% ± 11.14% 306
Prop. CNN-LSTM model 90.55% ± 9.45% 306

acc.=accuracy, Prop.=proposed, N.=number

effectiveness. It also suggests areas for potential improvement, particu-
larly for those users experiencing lower recognition accuracies.

4.2.3. Comparison with other works in the literature

Lastly, we compare the outcomes of our general models with those 
presented in other studies found in the literature, as depicted in Table 5. 
It is evident that the CNN-LSTM model achieves the highest level of 
recognition accuracy among all the results analyzed. The key to reach 
these results, we attribute it to the combination of post-processing with 
Deep Learning, specifically the automatic feature extraction thanks to 
the parallel convolutions from the CNNs, and the sequential information 
from the LSTM. By using Deep Learning, we do not limit the model to 
a specific set of characteristics, but rather, we allow the model to learn 
the most relevant characteristics by itself. Another characteristic of our 
models is that these were trained with more subjects than other works 
from the literature which allows to a better generalization. As a side 
note, we consider that comparing the raw published results with other 
works in the literature is oversimplification and prone to confusion. So 
we compared with works that have the same set of gestures, evaluate 
recognition accuracy and have a significant number of subjects (> 10).

4.3. Discussion

Our results underscore the feasibility and effectiveness of employ-
ing spectrograms and CNN-LSTM networks for real-time Hand Gesture 
Recognition using EMG signals. The study also emphasizes the signifi-
cance of integrating post-processing algorithms to enhance the accuracy 
and robustness of HGR models, particularly in the face of inter-personal 
variability and noise within EMG signals. Although our proposed post-
processing algorithms introduce a delay in the recognition process, this 
is a fair trade-off to ensure the model’s robustness and accuracy. Our 
proposed HGR model has the potential to improve user experience 
and satisfaction in HGR applications, as well as broaden the scope of 
possible applications and scenarios where it can be implemented. We 
believe our model is readily available and robust enough for applica-
tions such as human-computer interaction, entertainment applications, 
video games, and sign language recognition, and to a certain extent, in 
prosthetics.

However, critical applications, such as tele-operation of robotics in 
demanding environments, may still necessitate further research. Indeed, 
we identify the following points as potential directions for future inves-
tigation.

• Gesture Set Expansion: The current work recognizes only five hand 
gestures, limiting the applications of the HGR model. Future re-
search could delve into more complex and diverse gestures, includ-
ing dynamic, continuous, or sign language gestures.

• User Variance Minimization: We have observed that the HGR mod-
el’s performance varies based on user characteristics such as age, 
sex, and muscle activation patterns. Future studies could explore 
methods to decrease this variability, enhancing the model’s robust-
ness and generalizability. This could involve data augmentation 
9

techniques, transfer learning, or personalized calibration for each 
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user. Transfer learning, in particular, offers a promising approach 
to adapt the model to new users by leveraging knowledge learned 
from previous users, requiring fewer samples.

• Computational Cost Optimization: Our best model employs a CNN-
LSTM architecture, which has a high number of learnable parame-
ters and necessitates a large amount of training data. Future work 
could investigate ways to optimize the model’s computational cost, 
such as employing smaller or simpler architectures. Specifically, a 
smaller model could be more suitable for embedded systems with 
limited computational resources or energy constraints.

• Real-Time Performance Enhancement: The current HGR model ex-
hibits a latency of around 200 ms, which may not be suitable for 
some real-time applications. Future research could explore meth-
ods to reduce this latency, such as utilizing more efficient architec-
tures, parallel processing, or hardware acceleration.

• Sensor Fusion: The current HGR model solely uses superficial EMG 
signals for hand gesture recognition. Future work could investigate 
sensor fusion techniques to combine EMG with other modalities, 
such as IMU, computer vision, or force sensors, to enhance the ac-
curacy and robustness of gesture recognition.

• Adaptation to Intra-Personal Variability: EMG signals of the same 
user may change over time due to factors such as fatigue, electrode 
displacement, or environmental noise. Future work could employ 
online learning techniques to enable the model to learn from new 
data and adapt to changing conditions without requiring off-line 
retraining.

The integration of the HGR model with prosthetics represents a chal-
lenging yet promising research area, aiming to provide more natural 
and intuitive control for amputees using prosthetic hands. Some of the 
research topics and challenges in this field include:

• Haptic Feedback Integration: Incorporating haptic feedback mech-
anisms could enhance the user’s sense of touch and proprioception, 
reducing the mental effort required to operate the prosthesis.

• Control Strategy Exploration: Different control strategies, such as 
hierarchical, biomimetic, or adaptive methods, could be explored 
to manage the complexity and variability of hand gestures.

• Prosthetic Hand Optimization: Optimizing the design and perfor-
mance of the prosthetic hand, potentially through the use of shape 
memory alloy actuators, could achieve more realistic and dexterous 
movements.

• User Satisfaction Evaluation: Evaluating user satisfaction and ac-
ceptance of the prosthetic hand, as well as its impact on their 
quality of life and social interaction, could reduce the abandon-
ment rate of prosthesis devices.

4.4. Ethical aspects

As EMG-based Hand Gesture Recognition systems gain traction in 
fields such as medicine and bionics, it becomes imperative to address 
the ethical implications associated with their use. EMG data, being per-
sonal health information, necessitates adherence to relevant privacy 
laws and regulations during its collection, storage, and utilization. The 
design of applications using EMG-based hand gesture recognition sys-
tems should prioritize privacy and security. Users must be thoroughly 
informed about the usage of their EMG data and should provide ex-
plicit consent prior to data collection. This includes a clear explanation 
of the purpose of data collection, the duration of data storage, and the 
entities that will have access to it. To ensure fairness and accountabil-
ity, it is crucial that the models are trained with a diverse dataset that 
accurately represents the population that will use the system. This ap-
proach helps to avoid bias and discrimination. In the case of retraining 
or fine-tuning a model, users should be informed and their consent 
should be sought. When it comes to prosthetics, the model should be 

tested with amputees to evaluate its performance and robustness in 
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real-world scenarios. In such cases, the predictability and explainabil-
ity of the model are vital to building trust. It is important for users to 
understand how the system works, which includes transparency about 
the system’s capabilities, limitations, and its decision-making process. 
Moreover, continuous monitoring and evaluation of the system’s perfor-
mance should be conducted to ensure its reliability and safety. Feedback 
from users should be actively sought and incorporated to improve the 
system. Ethical guidelines should be regularly updated to reflect tech-
nological advancements and societal changes. Lastly, collaboration with 
regulatory bodies, healthcare professionals, and ethicists can help in 
addressing ethical challenges and promoting responsible use of technol-
ogy.

5. Conclusions

In this study, we proposed a novel Hand Gesture Recognition (HGR) 
model that uses EMG signals and combines spectrograms with CNN-
LSTM networks for real-time recognition of 5 hand gestures. The ex-
periments compared the impact of incorporating an LSTM network and 
a post-processing algorithm on the performance of the HGR architec-
ture. The results showed that the memory cells improved the recogni-
tion accuracy of the CNN-LSTM model (90.55% ± 9.45%) by 3.29% 
compared to the CNN model (87.26% ± 11.14%). Despite the better 
performance of the CNN-LSTM model, it had 53 times more learn-
ables than the CNN model. Instead, the post-processing originated an 
increment of 41.86% between CNN models, and 24.66% between CNN-
LSTM models. Thus, the simple post-processing algorithm had a more 
significant impact on recognition accuracy than the inclusion of mem-
ory cells via LSTM networks. This finding indicates that incorporating 
post-processing algorithms can have a greater impact on recognition 
accuracy than traditional approaches such as hyper-parameter tuning 
and signal representation. By focusing on post-processing algorithms, 
researchers can potentially enhance the accuracy of HGR models and 
make them more robust against variability in EMG signals. Overall, our 
results show the advantages of using Deep Learning techniques com-
bined with post-processing algorithms in the field of HGR, and are 
promising for improving the performance of HGR applications in the 
future. To ease the replication of our findings and potentially enable 
further advancements in this research, we made the code of our mod-
els publicly available, along with documentation and instructions for its 
execution. Future work includes expanding the set of gestures the sys-
tem can recognize, so more versatile and diverse applications can be 
developed. Also, further efforts should be made to minimize the vari-
ance among users in order to achieve the level of robustness necessary 
for this kind of systems.
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